Расчет резонансной частоты колебательного контура

239686253987693487Колебательный контур — электрическая цепь, содержащая катушку индуктивности, конденсатор и источник электрической энергии. При последовательном соединении элементов цепи колебательный контур называется последовательным, при параллельном − параллельным.

Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания.

Резонансная частота контура определяется так называемой формулой Томсона:

ƒ = 1/(2π√(LC))

При слишком малой индуктивности и большой емкости будет падать резонансное сопротивление контура, что приведет к ухудшению его избирательных свойств, а в схеме резонансного усилителя упадет усиление каскада. При слишком малой емкости и большой индуктивности катушка будет содержать большое количество витков, добротность ее будет уменьшаться, а собственная емкость расти, в результате она может сравняться с емкостью контурного конденсатора, что не допустимо. Также на настройку контура будет влиять емкость монтажа, ведь она соизмерима со значением С. Исходя из вышеуказанного, рекомендую выбирать соотношение емкости к индуктивности примерно как 100000 : 1 в абсолютном значении, что подходит для большинства контуров.

 

Например, для частоты 10,7 МГц оптимальным будет С=47 пФ и L= 4,7 мкГн, а для частоты 465 кГц оптимальные С=1000пФ и L=117мкГн.

 

Исходя из всего выше сказанного, онлайн калькулятор позволяет подобрать значения емкости и индуктивности в пределах ±20% от оптимального значения.

 

Для расчета частоты резонанса колебательного контура LC заполните предложенную форму:

Расчёт ёмкости для колебательного контура LC

C = 1/(4𲃲L)

Расчёт индуктивности для колебательного контура LC

L = 1/(4𲃲C)

Добавить комментарий

Войти с помощью: