TMP35, TMP36 и TMP37 — низковольтные прецизионные температурные датчики

4397657369876987368732TMP35, TMP36 и TMP37 — низковольтные прецизионные температурные датчики вырабатывают выходное напряжение, пропорциональное температуре в градусах Цельсия. TMP35/TMP36/TMP37 могут применяться без использования внешних элементов. Погрешность измерения температуры не превышает ±1°C на 25°C и ±2°C в диапазоне от -40°C по +125°C.

Напряжение питания датчиков температуры может быть пределах от 2,7 до 5,5В. Так же датчики характерны низким током потребления, более то, встроенная функция дежурного режима позволяет снизить ток потребления до 0,5 мкА.

Выходное напряжение

696329398

 

 

 

  • TMP35 — диапазон измерения температуры от 10°C до 125°C, коэффициент преобразования 20 мВ/°C
  • TMP36 — диапазон измерения температуры от -40°C до +125°C, коэффициент преобразования 20 мВ/°C
  • TMP37 — диапазон измерения температуры от 5°C до 100°C и имеет коэффициент преобразования 20 мВ/°C

TMP35/TMP36/TMP37 выпускаются в 3 выводных ТО-92, 8 выводных SOIC и 5 выводных SOT-23 корпусах для поверхностного монтажа.

Применение датчиков температуры

43926396236873На рисунке показана схема простого применения датчиков температуры.

Если функция дежурного режима не нужна то в корпусах SOT-23 и COIC-8 выход SHDN необходимо подключить к Vs. Так же обратите внимание на конденсаторный фильтр, которой должен быть емкостью 0,1 мкФ (керамический), выводы конденсатора должны быть максимально короткими и подключены непосредственно в выводам датчика.

Иногда возникает необходимость измерения средней температуры в разных частях помещения. Для этой цели возможно групповое использование датчиков температуры.

3765967567953228

 

Преобразователь сигналов термопар с компенсацией холодного спая

На рисунке показана схема преобразователя сигнала термопары с компенсацией холодного спая (температура окружающей среды). В качестве компенсатора холодного спая используется датчик TMP35. Термопара используемая в схеме (тип К) ХА.

354976376939398787

Схема рассчитана на измерение температуры в диапазоне от 0 до 250°С. Напряжение питания однополярное от 3,3В до 5,5В.

Тип термопары K показывает, что коэффициент Зеебека* приблизительно 41 мкВ/°C, а для датчика TMP35, с температурным коэффициентом 10 мкВ/°С, используются R1 и R2 с такими номиналами, чтобы привести температуру холодного спая к температурному коэффициенту 41 мкВ/°C.

Потенциометр R5 (50кОм) используется для настройки диапазона измерения. Так же следует учитывать, что при температуре 0°C выходное напряжение схемы составляет 0,1В, а при температуре 250°С 2,5В.

При настройке преобразователя воспользуйтесь градуировочной таблицей, при настройке следует учитывать, что Tизм=Токр+Ттерм, где:

  • Тизм — измеряемая температура (в мВ)
  • Токр — температура холодного спая (температура окружающей среды измеренная датчиком) (в мВ)
  • Ттерм — термо-э.д.с термопары в мВ

Из чего следует, что термо-э.д.с термопары = Тизм — Токр (в мВ)

Градуировочная таблица ТХА

°С\мВ 0 1 2 3 4 5 6 7 8 9

 0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

0

0,4

0,8

1,2

1,61

2,02

2,43

2,85

3,26

3,68

4,1

4,51

4,92

5,33

5,73

6,13

6,53

6,93

7,33

7,73

8,13

8,53

8,93

9,34

9,74

10,15

0,04

0,44

0,84

1,24

1,65

2,06

2,47

2,89

3,3

3,72

4,14

4,55

4,96

5,37

5,77

6,17

6,57

6,97

7,37

7,77

8,17

8,57

8,97

9,38

9,78

10,19

0,08

0,48

0,88

1,28

1,69

2,1

2,51

2,93

3,34

3,76

4,18

4,59

5

5,41

5,81

6,21

6,61

7,01

7,41

7,81

8,21

8,61

9,01

9,42

9,82

10,23

0,12

0,52

0,92

1,32

1,73

2,14

2,56

2,97

3,39

3,81

4,22

4,63

5,04

5,45

5,85

6,25

6,65

7,05

7,45

7,85

8,25

8,65

9,06

9,46

9,86

10,27

0,16

0,56

0,96

1,36

1,77

2,18

2,6

3,01

3,43

3,85

4,26

4,67

5,08

5,49

5,89

6,29

6,69

7,09

7,49

7,89

8,29

8,69

9,09

9,5

9,9

10,31

0,2

0,6

1

1,41

1,82

2,23

2,64

3,06

3,47

3,89

4,31

4,72

5,13

5,53

5,93

6,33

6,73

7,13

7,53

7,93

8,33

8,73

9,14

9,54

9,95

10,35

0,24

0,64

1,04

1,45

1,86

2,27

2,68

3,1

3,51

3,93

4,35

4,76

5,17

5,57

5,97

6,37

6,77

7,17

7,57

7,97

8,37

8,77

9,18

9,58

9,9

10,4

0,28

0,68

1,08

1,49

1,9

2,31

2,72

3,14

3,55

3,97

4,39

4,8

5,21

5,61

6,01

6,41

6,81

7,21

7,61

8,01

8,41

8,81

9,22

9,62

10,03

10,44

0,32

0,72

1,12

1,53

1,94

2,35

2,77

3,18

3,6

4,02

4,43

4,84

5,25

5,65

6,05

6,45

6,85

7,25

7,65

8,05

8,45

8,85

9,26

9,66

10,07

10,48

0,36

0,76

1,16

1,57

1,98

2,39

2,81

3,22

3,64

4,06

4,47

4,88

5,29

5,69

6,09

6,49

6,89

7,29

7,69

8,09

8,49

8,89

9,3

9,7

10,11

10,52

Температурный датчик с токовых выходом 4-20мА

235469765733637287687

Ток потребления датчика при в начале диапазона 4 мА и 20 мА в конце диапазона измерения температуры, при этом напряжение питания питания может быть от 9 до 18В.
В качестве источника опорного напряжения в схеме используется микромощный источник опорного напряжения с низким падением напряжения REF193, ток потребления которого не превышает 3 мА.

Для каждого типа датчика в схеме используются свои номиналы сопротивлений (см. таб.)

7657436976953726Потенциометры Р1 и Р2 служат для установки выходного тока на 4 мА в самой нижней точке диапазона и 20 мА в самой верхней точки диапазона измерения температуры.

*Эффект Зеебека — явление возникновения ЭДС в замкнутой электрической цепи, состоящей из последовательно соединённых разнородных проводников, контакты между которыми находятся при различных температурах.

Эффект Зеебека также иногда называют просто термоэлектрическим эффектом.

Добавить комментарий

Случайные статьи

  • Источник питания на ИМС LM723

    Источник питания на ИМС LM723

    На рисунке показана схема простого блока питания, основой источника питания служит микросхема LM723. Выходное напряжение источника питания может регулироваться от 3 до 30В, сама микросхема имеет выходной ток не более 150 мА, однако при помощи транзисторов VT1 VT2 максимальный выходной ток можно увеличить до 2,5А. Помимо всего, источник питания имеет …Подробнее...
  • Стабилизированный источник питания с регулируемым выходным напряжением на LM117

    Благодаря применению интегрального стабилизатора LM117, можно создать регулируемый источник стабилизированного напряжения. Схема очень проста, изменяя сопротивление R1 можно регулировать выходное напряжение от 1,5 до 30В при токе нагрузки не более 0,3А. С1 на 1500мкФ*50В, D1-D4 диоды любые выпрямительные на обратное напряжение не менее 50В и с максимальным прямым током 1А, …Подробнее...
  • Простой источник питания 0…+15В

    Простой источник питания 0…+15В

    На рисунке показана схема простого источника питания с выходным напряжением от 0 до +15 В и максимальным током нагрузки до 1 А. Транзистор VT1 должен быть установлен на небольшой теплоотвод. Трансформатор стандартный с напряжением на вторичной обмотке 18 В и максимальным током 1,5 А. Регулировка выходного напряжения производится при помощи …Подробнее...
  • Автомобильный регулятор освещения

    В темное время суток иногда необходимо дополнительное освещения в автомобиле (для ремонта, регулировка двигателя и др), предложенная схема позволяет плавно регулировать осветительную 12В/2А лампу от 5% до 90% ее яркости при помощи ШИМ регулятора. Регулятор предназначен для автомобилей с отрицательной массой. Конструкция регулятора основана на микросхеме 40106 которая работает как …Подробнее...
  • Зарядное устройство для автомобильного аккумулятора

    Переменным резистором R4 устанавливают порог срабатывания реле К2 (оно должно срабатывать при напряжении на гнездах XS1 и XS2, равном напряжению полностью заряженной батареи). Когда напряжение батареи достигнет заданного значения, откроются стабилитрон VD8 и транзистор VT2. Сработает реле К2, которое контактами К2.1 обесточит обмотку реле К1, а оно, отпуская, контактами К1.1 …Подробнее...