| Ваш IP: 54.146.98.143 | Online(24) - гости: 7, боты: 17 | Загрузка сервера: 0.64 ::::::::::::

ТЕРМОСТАБИЛИЗАТОР ДЛЯ НЕОТАПЛИВАЕМОГО ПОГРЕБА

Термостабилизатор рассчитан на эксплуатацию в условиях умеренно холодного климата при температуре окружающей среды от -20 до +35 °С, при относительной влажности воздуха до 85 % при температуре +25 °С и при атмосферном давлении в пределах 200…900 мм рт.ст. Работает термостабилизатор от сети переменного тока напряжением 220 В  частотой 50 Гц. Применение термостабилизатора данной конструкции не ограничивается использованием в неотапливаемых погребах и  может быть значительно расширено, если установить устройство в  теплоизолированном ящике, вынесенном на балкон городской квартиры, или в объемах с сыпучими материалами, или в сосудах с  жидкостями.

Принципиальная электрическая схема термостабилизатора  приведена на рис.

8485498456465564564654

Термостабилизатор состоит из входного устройства, выпрямителя, собранного на четырех выпрямительных диодах  средней мощности, устройства контроля и терморегулирования  температуры в овощехранилище.
Входное устройство включает электрический соединитель XI,  который смонтирован с электрическим кабелем с двойной изоляцией; предохранитель FU1, защищающий первичные и вторичные цепи термостабилизатора от перегрузок и коротких замыканий;  индикатор включения устройства в сеть HL1, сигнализирующий  одновременно о включении нагревателя; зажимы подключения нагрузки Х2 и ХЗ.
Выпрямитель выполнен на диодах VD1—VD4 по однофазной двухполупериодной мостовой схеме Греца, характеризующейся   повышенной частотой пульсаций выпрямленного напряжения,  хорошим использованием мощности устройства, пониженным обратным напряжением и повышенным падением напряжения в диодном  комплекте. С выпрямителя снимается постоянное напряжение,  предназначенное для питания схемы. Пульсирующее напряжение с диодного моста подается на анод тринистора VS1 и с устройства контроля — на узел управления.

Устройство стабилизации и контроля собрано на полупроводниковых приборах, основными из которых являются тринистор VS1 и терморезистор R9, изменяющий свое сопротивление в зависимости от температуры окружающей среды. Устройство выполнено таким образом, что при повышении температуры в объеме хранилища выше заданного верхнего предела мощность теплонагревателя  постепенно уменьшается до полного выключения. При повышении температуры сопротивление терморезистора R9 уменьшается, а при понижении температуры — увеличивается. Эти физические явления положены в основу устройства регулирования. При определенном расчетном значении сопротивления делителя напряжения R7-R9 транзистор VT2 закрыт и теплонагревательный элемент отключен от питающей сети. Следует отметить, что транзистор VT2 включен в делитель  напряжения и в стабилизатор опорного напряжения, выполненный на стабилитронах VD5, VD6, резисторе R3 и конденсаторе С2.
При снижении температуры в овощехранилище ниже  установленного уровня сопротивление делителя напряжения постепенно  увеличивается и транзистор VT2 начинает открываться, пропуская ток для открывания второго транзистора VT1, который управляет тринистором VS1. После полного открывания транзистора VT2 его ток открывает транзистор VT1, конденсатор С1 разряжается через резистор R5 и управляющий узел тринистора VSL Тринистор открывается, и
напряжение начинает поступать на термонагреватель R1. Резистором R8 можно регулировать температуру, при которой
срабатывает автомат, в пределах 0…+10 °С. При изменении номиналов комплектующих элементов можно значительно изменить пределы регулирования температуры и точность измерения, а также выходную мощность термостабилизатора.

В термостабилизаторе применяют элементы следующих типов:  резисторы R1 — термонагреватель, сопротивление которого не  превышает 50 Ом, R2—R7, R8 типа МЛТ, R8 СПЗ-4М, R9 типа ММТ-1; конденсаторы С1 типа К40У-9, С2 — К50-6-25В; предохранитель FU1 типа ПМ-1; электрические соединители XI типа «вилка» с электрическим кабелем; Х2—Х5 — контактные зажимы; переключатель SA1 типаП1Т-1-1.
При монтаже могут быть применены и другие элементы, не ухудшающие основные параметры термостабилизатора. Резисторы типа МЛТ можно заменить на резисторы типов ВСа, МТ, ОМЛТ, УЛИ; конденсатор типа К50-6 —на конденсаторы типов К50-3, К50-12, К50-16, К50-20; диод типа Д246 — на диод типа Д256; транзистор типа КТ315Б на транзистор типа КТ3102А; терморезистор типа ММТ-1 — на терморезисторы типов ММТ-4, КМТ-8, КМТ-12.

Основные технические данные термостабилизатора для неотапливаемого погреба

Номинальное напряжение питающей сети переменного тока, В . . . 220
Пределы изменения напряжения питающей сети переменного тока, В …. 200.. .240
Максимальная мощность термостабилизатора, Вт, при питании ТЭН …. 1200
Пределы регулирования температуры внутри овощехранилища, °С * …. 0…+10
Точность поддержания заданной температуры при температуре наружного воздуха -25 °С, не менее…. 0,5
Максимальный объем погреба, м3….2,5
КПД, %, не менее …0,75

Литература

  • МРБ 1219 Сидорин И.Н. — Электроника дома и в саду(справочник)

Добавить комментарий

Войти с помощью: 

Случайные статьи

  • Устройство защиты электродвигателя

    В качестве типовых элементов защиты электродвигателей чаще всего применяют электротепловые реле. Конструкторы вынуждены завышать номинальный ток этих реле, чтобы не было срабатываний при пуске. Надежность такой защиты невелика, и большой процент двигателей выходит из строя в процессе эксплуатации. Схема устройства защиты двигателей (см. рисунок) от неполнофазных режимов и перегрузки отличается …Подробнее...
  • Электрические вольфрамовые лампы накаливания

    Электрические вольфрамовые лампы накаливания

    В 1879 году Т.А. Эдисон создал лампу накаливания запустив ее в серийное производство, в качестве нити накаливания он использовал угольную нить, которую он получал обугливанием длинный и тонких бамбуковых волокон. Так же он ввел откачку воздуха из баллона. В 1890 году А.Н. Лодыгин продемонстрировал лампу с нитью накала из тугоплавкого …Подробнее...
  • К140УД1А-В, КР140УД1А-В, К140УД3А-В (справочные данные)

    К140УД1А-В, КР140УД1А-В, К140УД3А-В относятся операционным усилителям средней точности. Электрические параметры: Uпит. ном 2*6,3В (А), 2*12,6В (Б, В) I пот 6мА (А), 12мА(Б), 10мА(В) Ku 0,5…4*10³(А), 1…12*10³(Б), 8*10³(В) Iвх 5*10³нА(А), 8*10³нА(Б), 10*10³нА(В) ΔIвх 1,5*10³нА(А,Б), 2,8*10³нА(В) Кос.сф 60дБ f1 3МГц(А), 8МГц(Б), 5МГц(В) Vu 0,2В/мкс(А), 0,5В/мкс(В), 3,5В/мкс(В) Uвых.мах 2,5В(А), 5,7В(Б,В) Rвх 0,004МОм Предельные …Подробнее...
  • Универсальный контроллер балластов люминесцентных ламп — Трехступенчатая регулировка яркости

    Универсальный контроллер балластов люминесцентных ламп — Трехступенчатая регулировка яркости

    Трехступенчатые регуляторы яркости широко применяются в США. Система состоит из специального патрона лампы, четырехпозиционного переключателя и лампы с модифицированным контактным цоколем. Традиционная лампа в такой системе содержит две нити накаливания и три контакта на цоколе. IRPLCFL8U — это трехступенчатый регулируемый балласт для управления 32 Вт спиральной компактной люминесцентной лампой (CFL) от сети …Подробнее...
  • Типы корпусов микросхем

    Внешний вид корпусов типа ТСР, ВСС, DIP показаны на рис.1. В табл. 1-3 соответственно приведены их параметры и конструктивное исполнение, где А — металлокерамический корпус, С — керамический, М- пластиковый. Внешний вид разных типов корпусов изображен на рис.2. Литература Ж.Радиоматор 2002 №1Подробнее...