| Ваш IP: 54.167.18.170 | Online(19) - гости: 16, боты: 3 | Загрузка сервера: 0.73 ::::::::::::

Измерение температуры (18B20) с записью данных на MicroSD

Если Вам необходимо измерять температуру в пределах от -55 до 125ºС и вести за ней длительное наблюдение, то можно воспользоватся уст-вом описанном на этой странице, которое позволяет измерять температуру каждые 5 секунд и записывать показания измерения на карту памяти MicroSD.

Для сборки измерителя температуры Вам понадобятся:

  • SPI адаптер карт MicroSD
  • Датчик температуры 18B20
  • Часы реального времени DS3231 (ZS-042)
  • Arduino NANO (UNO)

Измеритель температуры не имеет органов управления или индикатора, он начинает измерять температуру и записывать ее данные на MicroSD карту сразу после подачи питания.

//    Подключение
 
//  CD       MOSI D11, MISO D12, CLK D13, CS D4, VCC +5V
//  18B20    OUT A1, +5V VCC
//  DS3231   SDA A4, SCL A5, VCC +5V
 
#include <SPI.h>
#include <SD.h>
#include <OneWire.h>
#include <Wire.h>
#include <DallasTemperature.h>
#include <DS3231.h>
OneWire oneWire(A1);
DallasTemperature t(&oneWire);
DS3231 clock;
RTCDateTime DateTime;
 
File myFile; 
float temp;
long nomer;
 
void setup() {
  Serial.begin(9600);
  Serial.print("Initializing SD card...");
  if (!SD.begin(4)) {Serial.println(" Error!!!"); return;}
  else{Serial.println(" OK");}// проверка подключения
 
  t.begin(); 
  t.setResolution(12);// 12 bit 18b20
  clock.begin();
  // clock.setDateTime(__DATE__, __TIME__);// установка времени DS3231, раскомментировать и залить скетч, далее закомментировать и залить скетч повторно   
}
 
void loop() {
  DateTime = clock.getDateTime();
  Serial.print(clock.dateFormat("d-m-Y H:i:s", DateTime));
  Serial.print(" ");
  t.requestTemperatures();
  Serial.println(temp = t.getTempCByIndex(0));//считываем температуру
  delay(5000);// записывать данные на CD каждые 5 сек
  nomer++;
 
   myFile = SD.open("temp.txt", FILE_WRITE);// открываем файл для записи, если файла нет, то создае его
   myFile.print(nomer);// запись
   myFile.print(" ");// запись
   myFile.print(clock.dateFormat("d-m-Y H:i:s", DateTime));// запись
   myFile.print(" ");// запись
   myFile.println(temp);// запись
   myFile.close();// закрываем файл
}

В монитор порта выводится следующая информация:

На карте памяти создается файл temp.txt (или данные дописываются если файл уже создан), данные заносятся построчно и содержать номер измерения, время и дата измерения, температуру.


Второй вариант уст-ва аналогичен первому, только в нем используется два датчика температуры 18B20 которые так же работают в диапазоне от -55 до 125ºС. Уст-во можно использовать как двух канальный терморегулятор, для этого добавлен четырех разрядный семисегментный индикатор на базе драйвера TM1637 (модуль TM1637) и три кнопки управления терморегулятором.

Кнопка «ВЫБОР» позволяет переходить от одного режима к другому. При подачи питания на индикаторе высвечивается показания первого датчика температуры (первый режим), при нажатии на кнопку «ВЫБОР» появляются показания второго датчика температуры (второй режим), повторное нажатие позволяет регулировать температуру первого канала (датчик 1 — третий режим), следующее нажатие позволяет регулировать температуру второго канала (датчик 2 — четвертый режим). Все значения терморегуляторов сохраняются в энергонезависимой памяти, для сохранения значений необходимо перейти в первый режим в котором отображается температура первого датчика.

Каждые 10 секунд все параметры записываются в файл temp.txt расположенный в корне MicroSD карты, данные имеют следующий вид:

29-10-2018 14:21:07 t1 = 25.00 r1 = -5 t2 = 25.50 r2 = -10
29-10-2018 14:21:17 t1 = 25.00 r1 = 5 t2 = 25.50 r2 = -15
29-10-2018 14:21:27 t1 = 25.00 r1 = 5 t2 = 25.50 r2 = 0
29-10-2018 14:21:38 t1 = 25.00 r1 = 5 t2 = 25.50 r2 = 10
29-10-2018 14:21:48 t1 = 25.00 r1 = 5 t2 = 25.50 r2 = 10
29-10-2018 14:21:58 t1 = 25.00 r1 = 5 t2 = 25.50 r2 = 10
29-10-2018 14:22:08 t1 = 25.00 r1 = 5 t2 = 25.50 r2 = 10
29-10-2018 14:22:18 t1 = 25.00 r1 = 5 t2 = 25.50 r2 = 10
29-10-2018 14:22:28 t1 = 25.00 r1 = 5 t2 = 25.50 r2 = 10

где

  • t1 и t2 — показания температуры первого и второго датчика
  • r1 и r2 — температура регулирования первого и второго канала
//    Подключение
 
//  CD       MOSI D11, MISO D12, CLK D13, CS D4, VCC +5V
//  18B20    OUT A1, +5V VCC
//  DS3231   SDA A4, SCL A5, VCC +5V
//  TM1637   CLK D7, DIO D6, VCC +5V
 
#include <SPI.h>
#include <SD.h>
#include <OneWire.h>
#include <Wire.h>
#include <DallasTemperature.h>
#include <EEPROMex.h> //#include <EEPROM.h>// в новой версии ARDUINO IDE
#include <DS3231.h>
#include <TM1637Display.h>
OneWire oneWire(A1);
TM1637Display display(7, 6);// CLK,DIO
DallasTemperature t(&oneWire);
DS3231 clock;
RTCDateTime DateTime;
 
File myFile; 
float temp1,temp2;
int t1,t2,n,t0,reg1,reg2,w,minus_reg1,minus_reg2;
unsigned long time;
uint8_t data[]{0,0,0,0};
const int gis = 1;// гистерезис
 
void setup() {
  Serial.begin(9600);
  pinMode(A3,INPUT);// кнопка выбора
  pinMode(9,INPUT);// кнопка плюс
  pinMode(3,INPUT);// кнопка минус
  pinMode(5,OUTPUT);// выход управления реле 1 канал
  pinMode(8,OUTPUT);// выход управления реле 2 канал
  Serial.print("Initializing SD card...");
  if (!SD.begin(4)) {Serial.println(" Error!!!");}
  else{Serial.println(" OK");}// проверка подключения
 
  display.setBrightness(1);// яркость TM1637 0-7 
  t.begin(); 
  t.setResolution(10);// 10 bit 18b20
  clock.begin();
  // clock.setDateTime(__DATE__, __TIME__);// установка времени DS3231, раскомментировать и залить скетч, далее закомментировать и залить скетч повторно   
 
          reg1 = EEPROM.read(0); 
          minus_reg1 = EEPROM.read(1);
          if(minus_reg1==1){reg1=reg1-2*reg1;}
          reg2 = EEPROM.read(2); 
          minus_reg2 = EEPROM.read(3);
          if(minus_reg2==1){reg2=reg2-2*reg2;}
}
 
void loop() {
  DateTime = clock.getDateTime();
  Serial.print(clock.dateFormat("d-m-Y H:i:s", DateTime));
  t.requestTemperatures();
  Serial.print(" t1 = ");
  Serial.print(temp1 = t.getTempCByIndex(0));//считываем температуру 1 датчик
  Serial.print(" t2 = ");
  Serial.print(temp2 = t.getTempCByIndex(1));//считываем температуру 2 датчик
  Serial.println(" ");
 
  //////////////////////// запись SD /////////////////////////////////////
 if(millis()-time>10000){
   myFile = SD.open("temp.txt", FILE_WRITE);// открываем файл для записи, если файла нет, то создае его
   myFile.print(clock.dateFormat("d-m-Y H:i:s", DateTime));// запись
   myFile.print(" t1 = ");// запись
   myFile.print(temp1);// запись
   myFile.print(" r1 = ");// запись
   myFile.print(reg1);// запись
   myFile.print(" t2 = ");// запись
   myFile.print(temp2);// запись
   myFile.print(" r2 = ");// запись
   myFile.println(reg2);// запись
   myFile.close();// закрываем файл
   time=millis();
  }
  ////////////////////////////////////////////////////////////////////////
 
  t1 = temp1;t2 = temp2;
 
  ///////////////////////////// кнопки управления //////////////////////
  if(analogRead(A3)>=900){n++;delay(200);if(n>3){n=0;}}// кнопка выбор
  // терморегулятор 1
  if(digitalRead(9)==HIGH && n==2){w=1;reg1++;delay(200);if(reg1>125){reg1=125;}}// плюс
  if(digitalRead(3)==HIGH && n==2){w=1;reg1--;delay(200);if(reg1<-55){reg1=-55;}}// минус
  // терморегулятор 2
  if(digitalRead(9)==HIGH && n==3){w=1;reg2++;delay(200);if(reg2>125){reg2=125;}}//плюс
  if(digitalRead(3)==HIGH && n==3){w=1;reg2--;delay(200);if(reg2<-55){reg2=-55;}}//минус
 
  if(n==0 && w==1){  EEPROM.update(0,abs(reg1));
                     if(reg1<0){minus_reg1=1;}else{minus_reg1=0;}
                     EEPROM.update(1,minus_reg1);
                     EEPROM.update(2,abs(reg2));
                     if(reg2<0){minus_reg2=1;}else{minus_reg2=0;}
                     EEPROM.update(3,minus_reg2);w=0;}
  /////////////////////////////////////////////////////////////////////
 
  ////////////////////////////// вывод на индикатор M1637 /////////////
  if(n==0){t0=t1;data[0] = 0x10;}
  if(n==1){t0=t2;data[0] = 0x14;}
  if(n==2){t0=reg1;data[0] = 0x11;}
  if(n==3){t0=reg2;data[0] = 0x15;}
 
  if(t0 > 99){data[1] = display.encodeDigit((t0/100)%10);}
  else{data[1] = 0x00;}
  if(t0 < 0){t0=abs(t0);data[1] = 0x40;}
  data[2] =  display.encodeDigit((t0/10)%10);
  data[3] =  display.encodeDigit((t0%10)%10);
  display.setSegments(data);
  ////////////////////////////////////////////////////////////////////
 
  // выходы управления реле ///
   if(reg1 >= temp1 + gis){digitalWrite(5,HIGH);}
   if(reg1 <= temp1 - gis){digitalWrite(5,LOW);}
   if(reg2 >= temp2 + gis){digitalWrite(8,HIGH);}
   if(reg2 <= temp2 - gis){digitalWrite(8,LOW);}
}

Показания первого датчика температуры 

Показания второго датчика температуры

Регулировка температуры первого канала

Регулировка температуры второго канала

Добавить комментарий

Случайные статьи

  • Измеритель индуктивности

    При изготовлении и настройке различной радиоаппаратуры часто возникает необходимость в измерении индуктивности. Большинство современных мультиметров или, вообще, не имеют режима измерения индуктивности, или не обеспечивают возможность измерения малых индуктивностей, применяемых в УКВ аппаратуре. Предлагаемый прибор позволяет измерять индуктивность на пяти поддиапазонах: 0-1, 0-10, 0-100, 0-1000, 0-10000 мкГн (см. рисунок) . …Подробнее...
  • Малогабаритный ИИП 24Вт

    Малогабаритный ИИП 24Вт

    Предлагаемый автогенераторный ИИП (импульсный источник питания) имеет малые габариты и высокий КПД. Его особенностью является то, что магнитопровод импульсного трансформатора работает с заходом в область насыщения. При проектировании автогенераторных ИИП в большинстве случаев мощный трансформатор используют в линейном режиме, а маломощный переключательный — в режиме насыщении магнитопровода. Отдельные обмотки этих …Подробнее...
  • Яркая светодиодная лампа

    Яркая светодиодная лампа

    На рисунке показана схема простой светодиодной лампы работающей от сетевого напряжения 220 В. Конденсатор С1 и сопротивление R1 образуют схему ограничения тока. 10 сверх ярких светодиодов белого свечения подключаются последовательно, полевой транзистор используется для автоматического отключения лампы в дневное время. Сопротивление фоторезистора 100 кОм при полном освещении и уменьшается в …Подробнее...
  • Стереодин

    При включении головок громкоговорителей по схеме, показанной на рис., можно поучить псевдостереофоническое звучание. Головки 1 и 2 включены синфазно в области НЧ звукового диапазона и противофазно в области ВЧ, за счет чего и осуществляется стерео эффект. Головки вместе с деталями стереодина помещены в одном ящике на фронтальной панели. Необходимо что …Подробнее...
  • Автомат освещения лестничной площадки

    Автомат лестничного освещения построен на основе таймера NE555. Таймер используется в качестве моностабильного генератора, время задающая цепь которого состоит из элементов R3 R7 C3. Таймер управляет исполнительным элементом — транзистором VT2 который в свою очередь управляет работой электромагнитного реле. Кнопки Кн1…Кн3 (их может быть неограниченное кол-во) включают лестничное освещение. Вывод …Подробнее...