| Ваш IP: 54.166.203.17 | Online(44) - гости: 27, боты: 17 | Загрузка сервера: 2.35 ::::::::::::

ПРОЦЕССЫ В В ЭЛЕКТРОННО-ДЫРОЧНОМ ПЕРЕХОДЕ

В большинстве полупроводниковых приборов используются кристаллы полупроводника с двумя и более участками (слоями) с различным током проводимости (n и p). При получении двухслойной структуры со слоями n и р-типа обычно концентрация примесей в слоях несимметрична: Na>>Nд либо Nд>>Nа. Один из слоев имеет более высокую концентрацию основных носителей и большую электропроводность: например, на рис. 1 показана двухслойная структура, где Na>>Nд, Рр>>Nn.

рис.1.

Область полупроводника, расположенная вблизи металлургической границы между р и n слоями, называется электронно-дырочным переходом или р-n переходом…

1. Рассмотрим процессы в р-n переходе в отсутствие внешнего электрического поля (рис. 1. а).

Из-за разности концентраций основных носителей в р и n-слоях происходит процесс диффузии через переход носителей заряда из области с повышенной в область с пониженной концентрацией носителей. При этом основные носители в р-области — дырки — диффундируют в n-слой, а основные носители n-слоя — электроны — диффундируют в р-слой. Диффузионный ток через переход Iдиф = Iдиф р + Iдиф n ≈ Iдиф р, так как в рассматриваемом примере Pp>>Nn.

Перейдя под воздействием сил диффузии металлургическую границу, носители рекомбинируют с основными носителями другого слоя. За счет ухода основных носителей из одного слоя и их рекомбинации в другом вблизи металлургической границы возникает область, обедненная подвижными основными носителями заряда и обладающая высоким сопротивлением (запирающий слой). В запирающем слое нарушается баланс положительных и отрицательных зарядов, так как при уменьшении концентрации подвижных носителей оказывается нескомпенсированным объемный заряд неподвижных ионов примесей: в р-слоев — отрицательных, в n-слое — положительных ионов. Этот двойной электрический слой (рис. 1.а) создает электрическое поле с напряженностью Ео и приводит к появлении на кривой распределении потенциала φ в полупроводнике потенциального барьера φо.

Электрическое поле, возникшее внутри запирающего слоя, вызывает направленное движение носителей через переход — дрейфовый ток, направленный навстречу диффузионной составляющей тока через переход. Дрейфовый ток через переход Iдр = Iдр р + Iдр n.

Диффузия носителей приводит к росту электрического поля и потенциального барьера, при этом растет дрейфовый ток. Рост двойного электрического слоя прекращается тогда, когда суммарный ток через переход равен нулю, т. е. Iдиф = -Iдр. Такой режим соответствует равновесному состоянию р-n перехода при отсутствии внешнего электрического поля.

Результирующий ток через переход в этом случае:

Iа = Iдиф — Iдр = Iдиф р + Iдиф n — Iдр р — Iдр n = 0

Ширина запирающего слоя в р- и n-слоях зависит от концентрации ионов примесей в слоях и тем меньше, чем больше концентрация примесей. Поэтому при рассматриваемом соотношении примесей Na>>Nд переход имеет двойной электрический слой, ширина которого в слабо легированной n-области больше (см. рис. 1.а).

2. Если двухслойный полупроводник включить в электрическую цепь (рис. 1. б) и приложить прямое напряжение  (плюс к р-слою, минус к n-слою), то это напряжение практически все оказывается приложенным к запирающему слою, как к участку с наибольшим сопротивлением. Из-за встречною направления внутреннего Ео и внешнего Еа, полей результирующая напряженность поля в запирающем слое снижается и потенциальный барьер равен φ=φ-Uа.

В результате этого возрастает количество носителей, обладающих энергией, достаточной для преодоления потенциального барьера, и увеличивается диффузионная составляющая Iдиф тока через переход. Дрейфовая составляющая определяется только количеством неосновных носителей, подошедших к запирающему слою в процессе теплового движения, причем неосновные носители по прежнему втягиваются полем перехода. Поэтому дрейфовый ток неосновных носителей от приложенного напряжения не зависит. Таким образом, суммарный ток через переход Iа = Iдиф — Iдр>0. Это прямой ток p-n перехода. Потенциальный барьер φо измеряется долями вольта, поэтому для протекания прямого тока к p-n переходу достаточно приложить напряжение, измеряемое тоже долями вольта. Уменьшение результирующего поля у p-n перехода приводит к уменьшению объемного заряда и сужению запирающего слоя.

3. Обратное смещение перехода (рис. 1.в) приводит к увеличению результирующего поля в запирающем слое и росту потенциального барьера: φ = φо+|Ua|. Диффузия носителей через переход становится практически невозможной, поэтому ток Ia = Iдиф — Iдр = -Iдр. В этом случае поле р-n перехода втягивает все подошедшие к нему неосновные носители независимо от потенциального барьера и через переход протекает только ток неосновных носителей: ток дырок из n-области в р-слой и электронов из р в n-слой. Однако ток неосновных носителей, или обратный ток, значительно меньше прямого тока через р-n переход, так как число неосновных носителей в полупроводнике мало. Соотношение прямого и обратного токов р-n перехода позволяет говорить об однонаправленной проводимости р-n перехода, т.е. о его выпрямляющем действии.

Обратный ток неосновных носителей через переход Iобр = Iдр иногда называют тепловым током, так как он сильно зависит от температуры: при нагреве полупроводника увеличивается генерация неосновных носителей; при этом тепловой ток удваивается при нагреве на 8º у германиевых приборов или на 10º, у кремниевых приборов.

При обратном смещении р-n перехода суммарная напряженность электрического поля перехода возрастает, поэтому возрастает заряд двойного электрического слоя и ширина запирающего слоя. Этот эффект используется в некоторых типах полупроводниковых приборов.

4. Зависимость тока через р-n переход от приложенного напряжения Iа = f (Ua) называется вольтамперной характеристикой (ВАХ) электронно-дырочного перехода.

рис.2

На рис. 2.а  ВАХ изображена при одинаковом масштабе по осям для положительных и отрицательных значений напряжений и токов. При малом прямом напряжении Ua, протекает большой прямой ток, при больших обратных напряжениях — малый тепловой ток. Характеристика рис. 2.а практически соответствует характеристике идеального вентиля, у которого имеют место нулевое падение напряжения при протекании прямого тока и нулевой ток при приложении обратного напряжения. Следовательно, свойства р-n перехода близки к свойствам идеального вентиля.

При необходимости учесть отличия ВАХ р-n перехода от идеальной вентильной характеристики ее строят в разных масштабах для положительных и отрицательных значений токов и напряжений (рис. 1.б, кривая 1).

Источник — Г.Н. Горбачев, Е.Е. Чаплыгин. «Промышленная электроника» 1988 г.

Добавить комментарий

Случайные статьи

  • Автомобильная сигнализация перегрева двигателя

    Автомобильная сигнализация перегрева двигателя дублирует уже имеющие в автомобиле системы контроля за температурой двигателя. Автомобильная сигнализация при достижение критической температуры выдает громкий звуковой сигнал.   Когда температура двигателя увеличивается сопротивление термистора уменьшается. Термистор подключен к R1 для деления напряжения которое поступает на вход  ОУ (2 контакт микросхемы) LM741. Это напряжение …Подробнее...
  • Инфракрасный ключ

    Дальность действия инфракрасного ключа 2-8м, он выполнен на распространенных и доступных микросхемах КР1506ХЛ1 для передатчика и КР1506ХЛ2 для приемника. Брелок инфракрасного ключа основан на КР1506ХЛ1, микросхема питается напряжением 9В, но можно также применить микросхему КР1566ХЛ1, она работает от напряжения 3В, но при этом дальность связи будет меньше (цоколевка обоих микросхем …Подробнее...
  • Источник питания 0…13.8В 10А

    На рисунке показана схема источника питания  с выходным напряжением от 0 до 13,8 (16В) с максимальным током нагрузки в 10А. В схеме используется микросхема LM723 и три транзистора, два из которых силовые — 2N3055.      Регулировка выходного напряжения осуществляется потенциометром VR1 (1К).Транзисторы VT1 VT2 должны быть установлены на радиаторы, …Подробнее...
  • Шестнадцатеричный индикатор

    Данный индикатор позволяет преобразовывать двоичный четырехразрядный код в числа от 0 до 15. Уст-во содержит 2-а дешифратора (К176ИД2) и систему управления дешифраторами на К561ЛА7. Цифровое табло состоит из 2-х семисегментных индикаторов, при чем на втором индикаторе используются сегменты В и С, для отображения единицы. Этим индикатором управляет транзисторный ключ на …Подробнее...
  • 19-й уровневый индикатор аудио сигнала

    19-й уровневый индикатор аудио сигнала

    Перегрузочная способность по входному сигналу 7,5В, при настройке желательно иметь вольтметр с дБ-шкалой, а сигнал подавать с синусоидального генератора, либо воспользоваться генератором Г3-110 с нормированным выходом. Резистором TR1 производим настройку уровня сигнала (регулировка коэф. усиления). Переключатель S1 меняет интенсивность свечения светодиодов. Элементная база R1-2=10Kohm C1=100uF 25V D1-19=LED 3 or 5mm …Подробнее...