| Ваш IP: 54.159.44.54 | Online(18) - гости: 15, боты: 3 | Загрузка сервера: 1.55 ::::::::::::

ПРОЦЕССЫ В В ЭЛЕКТРОННО-ДЫРОЧНОМ ПЕРЕХОДЕ

В большинстве полупроводниковых приборов используются кристаллы полупроводника с двумя и более участками (слоями) с различным током проводимости (n и p). При получении двухслойной структуры со слоями n и р-типа обычно концентрация примесей в слоях несимметрична: Na>>Nд либо Nд>>Nа. Один из слоев имеет более высокую концентрацию основных носителей и большую электропроводность: например, на рис. 1 показана двухслойная структура, где Na>>Nд, Рр>>Nn.

рис.1.

Область полупроводника, расположенная вблизи металлургической границы между р и n слоями, называется электронно-дырочным переходом или р-n переходом…

1. Рассмотрим процессы в р-n переходе в отсутствие внешнего электрического поля (рис. 1. а).

Из-за разности концентраций основных носителей в р и n-слоях происходит процесс диффузии через переход носителей заряда из области с повышенной в область с пониженной концентрацией носителей. При этом основные носители в р-области — дырки — диффундируют в n-слой, а основные носители n-слоя — электроны — диффундируют в р-слой. Диффузионный ток через переход Iдиф = Iдиф р + Iдиф n ≈ Iдиф р, так как в рассматриваемом примере Pp>>Nn.

Перейдя под воздействием сил диффузии металлургическую границу, носители рекомбинируют с основными носителями другого слоя. За счет ухода основных носителей из одного слоя и их рекомбинации в другом вблизи металлургической границы возникает область, обедненная подвижными основными носителями заряда и обладающая высоким сопротивлением (запирающий слой). В запирающем слое нарушается баланс положительных и отрицательных зарядов, так как при уменьшении концентрации подвижных носителей оказывается нескомпенсированным объемный заряд неподвижных ионов примесей: в р-слоев — отрицательных, в n-слое — положительных ионов. Этот двойной электрический слой (рис. 1.а) создает электрическое поле с напряженностью Ео и приводит к появлении на кривой распределении потенциала φ в полупроводнике потенциального барьера φо.

Электрическое поле, возникшее внутри запирающего слоя, вызывает направленное движение носителей через переход — дрейфовый ток, направленный навстречу диффузионной составляющей тока через переход. Дрейфовый ток через переход Iдр = Iдр р + Iдр n.

Диффузия носителей приводит к росту электрического поля и потенциального барьера, при этом растет дрейфовый ток. Рост двойного электрического слоя прекращается тогда, когда суммарный ток через переход равен нулю, т. е. Iдиф = -Iдр. Такой режим соответствует равновесному состоянию р-n перехода при отсутствии внешнего электрического поля.

Результирующий ток через переход в этом случае:

Iа = Iдиф — Iдр = Iдиф р + Iдиф n — Iдр р — Iдр n = 0

Ширина запирающего слоя в р- и n-слоях зависит от концентрации ионов примесей в слоях и тем меньше, чем больше концентрация примесей. Поэтому при рассматриваемом соотношении примесей Na>>Nд переход имеет двойной электрический слой, ширина которого в слабо легированной n-области больше (см. рис. 1.а).

2. Если двухслойный полупроводник включить в электрическую цепь (рис. 1. б) и приложить прямое напряжение  (плюс к р-слою, минус к n-слою), то это напряжение практически все оказывается приложенным к запирающему слою, как к участку с наибольшим сопротивлением. Из-за встречною направления внутреннего Ео и внешнего Еа, полей результирующая напряженность поля в запирающем слое снижается и потенциальный барьер равен φ=φ-Uа.

В результате этого возрастает количество носителей, обладающих энергией, достаточной для преодоления потенциального барьера, и увеличивается диффузионная составляющая Iдиф тока через переход. Дрейфовая составляющая определяется только количеством неосновных носителей, подошедших к запирающему слою в процессе теплового движения, причем неосновные носители по прежнему втягиваются полем перехода. Поэтому дрейфовый ток неосновных носителей от приложенного напряжения не зависит. Таким образом, суммарный ток через переход Iа = Iдиф — Iдр>0. Это прямой ток p-n перехода. Потенциальный барьер φо измеряется долями вольта, поэтому для протекания прямого тока к p-n переходу достаточно приложить напряжение, измеряемое тоже долями вольта. Уменьшение результирующего поля у p-n перехода приводит к уменьшению объемного заряда и сужению запирающего слоя.

3. Обратное смещение перехода (рис. 1.в) приводит к увеличению результирующего поля в запирающем слое и росту потенциального барьера: φ = φо+|Ua|. Диффузия носителей через переход становится практически невозможной, поэтому ток Ia = Iдиф — Iдр = -Iдр. В этом случае поле р-n перехода втягивает все подошедшие к нему неосновные носители независимо от потенциального барьера и через переход протекает только ток неосновных носителей: ток дырок из n-области в р-слой и электронов из р в n-слой. Однако ток неосновных носителей, или обратный ток, значительно меньше прямого тока через р-n переход, так как число неосновных носителей в полупроводнике мало. Соотношение прямого и обратного токов р-n перехода позволяет говорить об однонаправленной проводимости р-n перехода, т.е. о его выпрямляющем действии.

Обратный ток неосновных носителей через переход Iобр = Iдр иногда называют тепловым током, так как он сильно зависит от температуры: при нагреве полупроводника увеличивается генерация неосновных носителей; при этом тепловой ток удваивается при нагреве на 8º у германиевых приборов или на 10º, у кремниевых приборов.

При обратном смещении р-n перехода суммарная напряженность электрического поля перехода возрастает, поэтому возрастает заряд двойного электрического слоя и ширина запирающего слоя. Этот эффект используется в некоторых типах полупроводниковых приборов.

4. Зависимость тока через р-n переход от приложенного напряжения Iа = f (Ua) называется вольтамперной характеристикой (ВАХ) электронно-дырочного перехода.

рис.2

На рис. 2.а  ВАХ изображена при одинаковом масштабе по осям для положительных и отрицательных значений напряжений и токов. При малом прямом напряжении Ua, протекает большой прямой ток, при больших обратных напряжениях — малый тепловой ток. Характеристика рис. 2.а практически соответствует характеристике идеального вентиля, у которого имеют место нулевое падение напряжения при протекании прямого тока и нулевой ток при приложении обратного напряжения. Следовательно, свойства р-n перехода близки к свойствам идеального вентиля.

При необходимости учесть отличия ВАХ р-n перехода от идеальной вентильной характеристики ее строят в разных масштабах для положительных и отрицательных значений токов и напряжений (рис. 1.б, кривая 1).

Источник — Г.Н. Горбачев, Е.Е. Чаплыгин. «Промышленная электроника» 1988 г.

Добавить комментарий

Случайные статьи

  • Двухтональная сирена

    На рис. 1 изображена принципиальная схема двутональной сирены. Она обеспечивает поочередное звучание двух звуковых тонов. Схема содержит три автогенератора: задающий (ЗГ) на элементах DD1.1, DD1.2 на частоту примерно 1 Гц и два звуковых — на элементах DD2.1, DD2.2 и на элементах DD2.3, DD2.4. Чтобы звуковые генераторы работали поочередно, управляющие импульсы …Подробнее...
  • УМЗЧ класса D мощностью 18Вт на базе TDA7482

    УМЗЧ класса D мощностью 18Вт на базе TDA7482

    Усилитель на базе TDA7482 имеет встроенную защиту от перегрева, перенапряжения и КЗ. Усилитель на TDA7482 имеет следующие характеристики: Напряжение питания от +/-10В до +/-25В (номинальное +/-21В) Ток покоя 40…60мА Выходная мощность 18Вт(Rн=4 Ом) при КНИ 1% и в номинальном напряжении питания  КНИ=0,1% при выходной мощности 1Вт на нагрузке 8 Ом …Подробнее...
  • Индикатор выходной мощности усилителя

    Индикатор выходной мощности усилителя

    На рисунке показана схема простого индикатора выходной мощности усилителя ЗЧ. Индикатор содержит 10 светодиодов, которые показывают выходную мощность усилителя от 0,2Вт до 100Вт. Основу схемы составляет микросхема LM3915, которая представляет собой светодиодный индикатор уровня аудио-сигнала. Сопротивление R1 зависит от сопротивления динамической головки используемой в АС (см. табл.). Напряжение питания от 12 до 20В. …Подробнее...
  • 2N3055 — Усилитель мощности

    2N3055 — Усилитель мощности

    На рисунке представлена схема простого усилителя. Номинальное напряжение питания усилителя 50В, но этот усилитель может так же работать при напряжении питания от 30 до 60В. Максимальное входное напряжение примерно от 0.8 — 1В. Вместо указанных транзисторов можно применить другие,  N-P-N- проводимости. Выходная мощность усилителя 60Вт при напряжении питания +50В. Некоторые …Подробнее...
  • Стереофонический регулятор громкости, баланса и тембра на LM1036

    Стереофонический регулятор громкости, баланса и тембра на LM1036

    Стереофонический регулятор громкости, баланса и тембра на LM1036 имеет следующие характеристики: Напряжение питания 9…16В(12В номинальное) Регулировка громкости в диапазоне 75дБ Регулировка тембра +/-15дБ Коэффициент нелинейных искажений 0,06% при Uвх=0,3В Отношение сигнал/шум -80дБ Мощность рассеивания  1Вт Ток потребления 35…45мА Uвых максимальное — 0,8 (Uпит=12В) Разделение каналов 75…60дБПодробнее...