| Ваш IP: 54.146.18.105 | Online(19) - гости: 8, боты: 11 | Загрузка сервера: 3.18 ::::::::::::

ПРОЦЕССЫ В В ЭЛЕКТРОННО-ДЫРОЧНОМ ПЕРЕХОДЕ

В большинстве полупроводниковых приборов используются кристаллы полупроводника с двумя и более участками (слоями) с различным током проводимости (n и p). При получении двухслойной структуры со слоями n и р-типа обычно концентрация примесей в слоях несимметрична: Na>>Nд либо Nд>>Nа. Один из слоев имеет более высокую концентрацию основных носителей и большую электропроводность: например, на рис. 1 показана двухслойная структура, где Na>>Nд, Рр>>Nn.

рис.1.

Область полупроводника, расположенная вблизи металлургической границы между р и n слоями, называется электронно-дырочным переходом или р-n переходом…

1. Рассмотрим процессы в р-n переходе в отсутствие внешнего электрического поля (рис. 1. а).

Из-за разности концентраций основных носителей в р и n-слоях происходит процесс диффузии через переход носителей заряда из области с повышенной в область с пониженной концентрацией носителей. При этом основные носители в р-области — дырки — диффундируют в n-слой, а основные носители n-слоя — электроны — диффундируют в р-слой. Диффузионный ток через переход Iдиф = Iдиф р + Iдиф n ≈ Iдиф р, так как в рассматриваемом примере Pp>>Nn.

Перейдя под воздействием сил диффузии металлургическую границу, носители рекомбинируют с основными носителями другого слоя. За счет ухода основных носителей из одного слоя и их рекомбинации в другом вблизи металлургической границы возникает область, обедненная подвижными основными носителями заряда и обладающая высоким сопротивлением (запирающий слой). В запирающем слое нарушается баланс положительных и отрицательных зарядов, так как при уменьшении концентрации подвижных носителей оказывается нескомпенсированным объемный заряд неподвижных ионов примесей: в р-слоев — отрицательных, в n-слое — положительных ионов. Этот двойной электрический слой (рис. 1.а) создает электрическое поле с напряженностью Ео и приводит к появлении на кривой распределении потенциала φ в полупроводнике потенциального барьера φо.

Электрическое поле, возникшее внутри запирающего слоя, вызывает направленное движение носителей через переход — дрейфовый ток, направленный навстречу диффузионной составляющей тока через переход. Дрейфовый ток через переход Iдр = Iдр р + Iдр n.

Диффузия носителей приводит к росту электрического поля и потенциального барьера, при этом растет дрейфовый ток. Рост двойного электрического слоя прекращается тогда, когда суммарный ток через переход равен нулю, т. е. Iдиф = -Iдр. Такой режим соответствует равновесному состоянию р-n перехода при отсутствии внешнего электрического поля.

Результирующий ток через переход в этом случае:

Iа = Iдиф — Iдр = Iдиф р + Iдиф n — Iдр р — Iдр n = 0

Ширина запирающего слоя в р- и n-слоях зависит от концентрации ионов примесей в слоях и тем меньше, чем больше концентрация примесей. Поэтому при рассматриваемом соотношении примесей Na>>Nд переход имеет двойной электрический слой, ширина которого в слабо легированной n-области больше (см. рис. 1.а).

2. Если двухслойный полупроводник включить в электрическую цепь (рис. 1. б) и приложить прямое напряжение  (плюс к р-слою, минус к n-слою), то это напряжение практически все оказывается приложенным к запирающему слою, как к участку с наибольшим сопротивлением. Из-за встречною направления внутреннего Ео и внешнего Еа, полей результирующая напряженность поля в запирающем слое снижается и потенциальный барьер равен φ=φ-Uа.

В результате этого возрастает количество носителей, обладающих энергией, достаточной для преодоления потенциального барьера, и увеличивается диффузионная составляющая Iдиф тока через переход. Дрейфовая составляющая определяется только количеством неосновных носителей, подошедших к запирающему слою в процессе теплового движения, причем неосновные носители по прежнему втягиваются полем перехода. Поэтому дрейфовый ток неосновных носителей от приложенного напряжения не зависит. Таким образом, суммарный ток через переход Iа = Iдиф — Iдр>0. Это прямой ток p-n перехода. Потенциальный барьер φо измеряется долями вольта, поэтому для протекания прямого тока к p-n переходу достаточно приложить напряжение, измеряемое тоже долями вольта. Уменьшение результирующего поля у p-n перехода приводит к уменьшению объемного заряда и сужению запирающего слоя.

3. Обратное смещение перехода (рис. 1.в) приводит к увеличению результирующего поля в запирающем слое и росту потенциального барьера: φ = φо+|Ua|. Диффузия носителей через переход становится практически невозможной, поэтому ток Ia = Iдиф — Iдр = -Iдр. В этом случае поле р-n перехода втягивает все подошедшие к нему неосновные носители независимо от потенциального барьера и через переход протекает только ток неосновных носителей: ток дырок из n-области в р-слой и электронов из р в n-слой. Однако ток неосновных носителей, или обратный ток, значительно меньше прямого тока через р-n переход, так как число неосновных носителей в полупроводнике мало. Соотношение прямого и обратного токов р-n перехода позволяет говорить об однонаправленной проводимости р-n перехода, т.е. о его выпрямляющем действии.

Обратный ток неосновных носителей через переход Iобр = Iдр иногда называют тепловым током, так как он сильно зависит от температуры: при нагреве полупроводника увеличивается генерация неосновных носителей; при этом тепловой ток удваивается при нагреве на 8º у германиевых приборов или на 10º, у кремниевых приборов.

При обратном смещении р-n перехода суммарная напряженность электрического поля перехода возрастает, поэтому возрастает заряд двойного электрического слоя и ширина запирающего слоя. Этот эффект используется в некоторых типах полупроводниковых приборов.

4. Зависимость тока через р-n переход от приложенного напряжения Iа = f (Ua) называется вольтамперной характеристикой (ВАХ) электронно-дырочного перехода.

рис.2

На рис. 2.а  ВАХ изображена при одинаковом масштабе по осям для положительных и отрицательных значений напряжений и токов. При малом прямом напряжении Ua, протекает большой прямой ток, при больших обратных напряжениях — малый тепловой ток. Характеристика рис. 2.а практически соответствует характеристике идеального вентиля, у которого имеют место нулевое падение напряжения при протекании прямого тока и нулевой ток при приложении обратного напряжения. Следовательно, свойства р-n перехода близки к свойствам идеального вентиля.

При необходимости учесть отличия ВАХ р-n перехода от идеальной вентильной характеристики ее строят в разных масштабах для положительных и отрицательных значений токов и напряжений (рис. 1.б, кривая 1).

Источник — Г.Н. Горбачев, Е.Е. Чаплыгин. «Промышленная электроника» 1988 г.

Добавить комментарий

Случайные статьи

  • Простой стрелочный частотомер

    Простой стрелочный частотомер

    Схема простого стрелочного частотомера показана на рисунке. Основу частотомера составляет триггер Шмитта и формирователь импульсов. Триггер Шмитта, будучи потенциальным реле, преобразует сигналы синусоидальной или другой формы в прямоугольные импульсы. Эти импульсы нельзя использовать для измерения, так как их длительность зависит от амплитуды входного сигнала. Их применяют для запуска формирователя импульсов …Подробнее...
  • Расчет таймера NE555

    Расчет таймера NE555

    NE555 — аналоговая интегральная схема, универсальный таймер — устройство для формирования (генерации) одиночных и повторяющихся импульсов со стабильными временными характеристиками. Впервые выпущен в 1971 году компанией Signetics под обозначением NE555. Функциональные аналоги оригинального NE555 выпускаются во множестве биполярных и КМОП-вариантов. Сдвоенная версия 555 выпускается под обозначением 556, счетверенная — под …Подробнее...
  • Простой УМЗЧ 18Вт на транзисторах

    Простой УМЗЧ 18Вт на транзисторах

    Список элементов P1 = 22K  (сдвоенный для стерео) R1 = 1K 1/4Вт Резистор R2 = 4K7 1/4Вт Резистор R3 = 100р 1/4Вт Резистор (сначала переменный для настройки заменяется на постоянный) R4 = 4K7 1/4Вт Резистор R5 = 82K 1/4Вт Резистор R6 = 10R 1/2Вт Резистор R7 = R22 4Вт Резистор …Подробнее...
  • Радиомикрофон с питанием от КРОНЫ

    На рисунке показана схема радиомикрофона которая питается от напряжения 9 В. Радиомикрофон обладает большой чувствительностью и способен воспринимать не громкую речь на значительном расстоянии, это достигнуто благодаря применению однокаскадного усилителя ЗЧ. Радиомикрофон работает в диапазоне УКВ ЧМ 64-75МГц или 88-108 МГц. Монтаж выполнен объемным способом, в качестве источника питания используется …Подробнее...
  • Инфракрасный ключ

    Дальность действия инфракрасного ключа 2-8м, он выполнен на распространенных и доступных микросхемах КР1506ХЛ1 для передатчика и КР1506ХЛ2 для приемника. Брелок инфракрасного ключа основан на КР1506ХЛ1, микросхема питается напряжением 9В, но можно также применить микросхему КР1566ХЛ1, она работает от напряжения 3В, но при этом дальность связи будет меньше (цоколевка обоих микросхем …Подробнее...