| Ваш IP: 54.166.173.0 | Online(31) - гости: 13, боты: 18 | Загрузка сервера: 1.86 ::::::::::::

ЭЛЕКТРОПРОВОДНОСТЬ ПОЛУПРОВОДНИКОВ

В основе современной промышленной электроники лежит применение полупроводниковых приборов, отчего ее часто называют полупроводниковой электроникой.

Рассмотрим электрические свойства полупроводников. Полупроводниками называются вещества, имеющие удельное электрическое сопротивление в пределах 10^-3 — 10^-4 Ом•см и занимающие по электропроводности промежуточное положение между металлами и диэлектриками. Указанное различие в электропроводности веществ обусловлено различием в энергетических спектрах этих материалов, то есть различием в разрешенных значениях уровней энергии электронов, имеющихся у атомов, которые составляют структуру данного вещества.

При образовании кристалла энергетические уровни атомов расщепляются, что приводит к образованию зон, состоящих из близко расположенных друг к другу энергетических уровней. На энергетической диаграмме чистого полупроводника (рис. 1) показаны В — валентная зона, все уровни которой при температуре абсолютного нуля заполнены электронами, С — зона свободных электронов (зона проводимости), на уровни которой могут переходить электроны при возбуждении атомов и З — запрещенная зона, энергетические уровни в которой отсутствуют. Наличие запрещенной зоны означает, что для перехода в зону проводимости электрону необходимо сообщить энергию, большую, чем ΔW.

Рис.1

У металлов запрещенная зона отсутствует и валентная зона непосредственно соприкасается с зоной проводимости. Поэтому в металлах число свободных электронов велико, что и обеспечивает их высокую электро- и теплопроводность. У изоляторов ширина запрещенной зоны велика (ΔW > эВ) и при обычных условиях электроны проводимости практически отсутствуют.

Рис. 2. Зонная диаграмма и схема образования носителей зарядов в чистом полупроводнике (а) и полупроводниках n-типа (б) и p-типа (в)

Ширина запрещенной зоны ΔW у наиболее распространенных полупроводников — германия (Gе) и кремния (Si)  — составляет соответственно 0,72 и 1,12 эВ. Эти полупроводники принадлежат к IV группе элементов таблицы Менделеева и имеют по четыре валентных электрона. На рис. 2  показана также схема кристаллической решетки этих полупроводников, где связи, образованные валентными электронами, обозначены двойными линиями.

Из-за относительно узкой запрещенной зоны у Gе и Si уже при температуре, близкой к комнатной (Т ≈ 300 К), некоторые электроны получают энергию, достаточную, чтобы преодолеть запрещенную зону и перейти в зону проводимости. При уходе электрона в валентной зоне остается незаполненный энергетический уровень — дырка. В кристаллической решетке при этом происходит разрыв одной из валентных связей в кристалле полупроводника и появление свободного электрона, который может свободно перемещаться по кристаллу, и дырки — узла решетки, лишенного одного из электронов связи. Оборванная связь может быть восстановлена, если ее возобновит электрон из соседней связи.

Процесс восстановления связей за счет перемещения электронов от одного атома решетки к другому, т. е. в валентной зоне, удобно представить в виде противоположно направленного движения дырок, которым приписывается положительный заряд (т. е. заряд, противоположный заряду перемещающихся электронов). Таким образом, в кристалле возможно перемещение как свободных электронов (отрицательных зарядов), так и дырок (положительных зарядов).

Процесс образования в чистом полупроводнике пары электрон в зоне проводимости — дырка и валентной зоны получил название генерации собственных носителей зарядов.

Одновременно с процессом генерации носителей зарядов протекает процесс их рекомбинации — встречи электронов с дырками, сопровождающийся возвратом электрона из зоны проводимости в валентную зону и исчезновением свободных зарядов. Чаще всего рекомбинация происходит на дефектах кристаллической решетки (нарушения кристаллической структуры, случайные примеси трещины, дефекты в поверхностных слоях); эти дефекты служат центрами рекомбинации.

Среднее время между моментами генерации и рекомбинации называется временем жизни носителя заряда.

Благодаря рекомбинации количество носителей заряда в полупроводнике не увеличивается и при постоянной температуре неизменно. Концентрации (количество носителей в единице объема, 1/см³) дырок pi и электронов ni в чистом полупроводнике равны: pi=ni. В рабочем диапазоне температур концентрация электронов и дырок в чистом полупроводнике невелика, и по своим электрическим свойствам чистый полупроводник близок к диэлектрикам.

Введение в чистый полупроводник небольших количеств примесей (например, в пропорции один атом примеси на миллион атомов полупроводника) приводит к резкому изменению характера электропроводности.

Введем в кремний или германий атомы примесей V группы элементов таблицы Менделеева (мышьяк, фосфор или сурьму), имеющие на внешней оболочке по пять валентных электронов. Такие примеси, обладающие дополнительным валентным электроном, называются донорными. Один из валентных электронов оказывается лишним, не образует связи с соседними атомами полупроводника. На энергетической диаграмме этому электрону соответствует локальный энергетический уровень, расположенный в верхней части запрещенной зоны (рис. 2,б) и заполненный при температуре абсолютного нуля.

Близость локальных уровней к зоне проводимости приводит к тому, что уже при небольшом нагреве атомы примеси ионизируются, отдают дополнительный электрон, при этом число свободных электронов увеличивается. Образование свободных электронов при ионизации донорной примеси сопровождается появлением в узлах кристаллической решетки неподвижных положительных зарядов — ионов примеси. Обмен электронами между атомами примеси невозможен, так как атомы примеси удалены друг от друга и при комнатной температуре все ионизированы. Таким образом, ионизация атомов примеси не приводит к увеличению концентрации дырок, которые образуются только при разрыве связей между атомами полупроводника. Поэтому при введении донорной примеси концентрация свободных электронов оказывается значительно больше концентрации дырок и электропроводность определяется в основном электронами. В этом случае электроны называют основными носителями (их концентрация обозначается Nn), дырки — неосновными (концентрация Pn), а такой полупроводник называется полупроводником n-типа. Несмотря на преобладание в примесном полупроводнике подвижных носителей одного знака, полупроводник в целом электрически нейтрален, так как избыточный заряд подвижных носителей компенсируется зарядом неподвижных ионов примесей. Для полупроводника n-типа справедливо следующее равенство концентрации отрицательных и положительных зарядов:

Nn=Pn + Nд

где Nд — концентрация донорной примеси.

Поскольку Pn мала (ширина запрещенной зоны ΔW велика и генерация собственных носителей полупроводников затруднена, как установлено при рассмотрении электропроводности чистых полупроводников), то Nn≈Nд. Таким образом, концентрация основных носителей практически равна концентрации атомов примеси, поскольку в рабочем диапазоне температур они полностью ионизированы. В этом диапазоне температур концентрация основных носителей не зависит от температуры. При введении в кремний или германий примесей III группы (алюминия, бора или индия), называемых акцепторными, в кристаллической решетке (рис. 2, в) в месте расположения атома примеси появляется дополнительный энергетический уровень, расположенный вблизи валентной зоны и незаполненный при температуре абсолютного нуля. За счет прихода электрона от соседнего атома основного вещества (например, при нагреве до комнатной температуры) образуется отрицательный ион примеси, а на месте оборванной связи положительный заряд — дырка. Локальные энергетические уровни примесей расположены теперь около валентной зоны и легко берут на себя электроны из этой зоны, приводя к образованию дырок. Основными носителями при этом становятся дырки, неосновными — электроны. Избыточный заряд дырок уравновешивается зарядом отрицательных ионов, при этом сохраняется электрическая нейтральность полупроводника. Полупроводник с акцепторной примесью называется полупроводником р-типа, Для р-полупроводника:

Pp = Np + Na ≈ Nа

где Na — концентрация акцепторных примесей.

Поскольку в диапазоне комнатных температур все атомы акцепторной примеси ионизированы (приняли дополнительный электрон), концентрация основных носителей в указанном рабочем диапазоне температур не зависит от температуры. Удельная электрическая проводимость полупроводников:

где q — заряд электрона, n и р — концентрация электронов и дырок, μn и μp — подвижность электронов и дырок, т. е. средняя скорость направленного движения носителей заряда, отнесенная к напряженности электрического поля.

В электронном полупроводнике Nn >> Pn, поэтому:

В дырочном полупроводнике Pp >> Np, следовательно:

При увеличении температуры увеличиваются тепловые колебания кристаллической решетки, подвижность носителей падает. Так как в рабочем диапазоне температур концентрация основных носителей примесных полупроводников неизменна, их электропроводность уменьшается с ростом температуры из-за снижения подвижности.

Источник — Г.Н. Горбачев, Е.Е. Чаплыгин. «Промышленная электроника» 1988 г.

Добавить комментарий

Случайные статьи

  • Предварительный УНЧ с регулировкой тембра

    Схема выполнена на сдвоенном ОУ TL072. На А1.1 сделан предварительный усилитель с коэф. усиления заданным отношением R2\R3. R1-регулятор громкости. На ОУ А1.2 выполнен активный трех полосовой мостовой регулятор тембра. Регулировки осуществляются переменными резисторами R7R8R9. Коэф. передачи этого узла 1. Наряженные питания предварительного УНЧ может быть от ±4В до ±15В Литература …Подробнее...
  • РЕГУЛИРУЕМЫЙ ДВУПОЛЯРНЫЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ

    Если у вас есть двуполярный блок питания, дополните его предлагаемым стабилизатором напряжения. И тогда вы станете обладателем источника, выходное напряжение которого можно регулировать в широких пределах, и не переживать за появление коротких замыканий в нагрузке — автоматика защиты сработает мгновенно. Стабилизатор (см. рисунок) предназначен для использования в лабораторном блоке питания …Подробнее...
  • Простой стабилизатор на 2N3055

    Простой стабилизатор на 2N3055

    Предлагаемый стабилизатор напряжения выполнен на биполярном транзисторе 2N3055, который имеет следующие параметры: Uк-э.макс. — 60В Uк-э.макс. (Rбэ<100om) — 70В Uк-б.макс. — 100В Iк.макс. — 15А Iб.макс. — 7А Pк.макс. на радиаторе (+25°С) — 115Вт Uэ-б.макс.-  7В Iк.обр. (Uк=30В) — 0,7мА h21э — 20..70 Uк-э.насыщ. < 3В fгр. > 3МГц Диапазон …Подробнее...
  • УНЧ на TDA7235

    УНЧ на TDA7235

    УНЧ с широким диапазоном напряжений питания. Предназначен для работы в носимых радио и тв приемниках. Напряжение питания 1,8…24В Максимальный потребляемый ток 1А Ток покоя при питании 12В менее 10мА Выходная мощность при КНИ=10%: Uп=9В Rн=4Ом — 1,6Вт Uп=12В Rн=8Ом — 1,8Вт Uп=15В Rн=16Ом — 1,8Вт Uп=20В Rн=32Ом — 1,6Вт КНИ …Подробнее...
  • Формирователи импульсов от механических контактов

    Формирователи импульсов от механических контактов

    При проектировании цифровых уст-в часто возникает необходимость в формировании четкого перехода 0/1 или 1/0 от реле или механического переключателя. Как правило переключение механического переключателя сопровождается дребезгом контактов, что может привести к серии ложных импульсов. Формирователь на рисунке (а.) состоит из триггера Шмитта, на выходе которого включен фильтр НЧ. При замыкании …Подробнее...