| Ваш IP: 3.227.240.143 | Online(23) - гости: 9, боты: 14 | Загрузка сервера: 1.99 ::::::::::::

L/C метр (Arduino)

На платформе Arduino можно собрать простой измеритель емкости и индуктивности. Прибор позволяет измерять индуктивность катушек от единиц мкГн до десятков мГн и емкость конденсаторов от десятков пФ до 0,5 мкФ с достаточно большой точностью. Схема собрана на компараторе LM311 и нескольких пассивных элементах, на плате Arduino собран частотомер (до 6,5 МГц).

Измерение емкости и индуктивности происходит достаточно просто, так как L/C элементы представляют собой колебательный контур, то компаратор совместно с колебательным контуром будет генерировать частоту, а частотомер на Arduino произведет пересчет частоты в значения индуктивности или емкости. В уст-ве две кнопки управления, первая переключение режимов измерения L/C, вторая калибровка нуля. Из схемы видно, что в уст-ве уже имеется индуктивность и емкость, индуктивность необходима для измерения емкости, а так же для измерения малых величин индуктивности. Емкость нужна для измерения индуктивности, при этом индуктивность встроенная в прибор может иметь большой разбег в номинале, а конденсатор должен быть точным, от него зависит базовая погрешность прибора. При первоначальной настройке прибора необходимо закоротить контакты «⊥» и «L», нажать на кнопку калибровки нуля, при этом произойдет измерение индуктивности встроенная в прибор, значение индуктивности будет сохранено в энергонезависимой памяти. Далее можно подключить любую катушку или конденсатор выбрать нужный режим (L/C) и провести измерение. Для измерения емкости необходимо нажать на кнопку L/C, закоротить контакты «⊥» и «L», а  емкость подключить к контактам «⊥ или L» и «C».

При измерении индуктивности или емкости значения индуктивности или емкости внутренних элементов (L1 C1), будут автоматически вычтены из конечного результата. Полученные значения выводятся на LCD индикатор 1602 на первую строку, а во второй строке выводится резонансная частота.

#include <FreqCount.h> // freqcount.zip
#include <LiquidCrystal.h>
LiquidCrystal lcd(8, 7, 2, 3, 4, 6);// RS,E,D4,D5,D6,D7
#include <EEPROM.h>
unsigned long f;
const float c = 1000.0*pow(10,-12);
float l_pop=0.00;
float l,c_iz;
int l_int;
byte lc,w;
 
 
void setup() {Serial.begin(9600);
  lcd.begin(16, 2);// LCD 16X2
  FreqCount.begin(1000);
  pinMode(13,INPUT);pinMode(12,INPUT);
  l_pop = float(EEPROM.read(0)*256 + EEPROM.read(1))/100; 
  Serial.println(float(EEPROM.read(0)*256 + EEPROM.read(1))/100);
}
 
void loop() {
    lcd.setCursor(0,1);lcd.print("F = ");
  if(FreqCount.available()&&w==0){f = FreqCount.read();lcd.print(f);lcd.print(" Hz      ");}
  if(digitalRead(13)==HIGH){
   l_pop = float(1000000/(4*PI*PI*f*f*c));lcd.clear();lcd.setCursor(0,0);lcd.print(" calibration  0 ");
   l_int=round(l_pop*100);EEPROM.update(0,highByte(l_int)); EEPROM.update(1,lowByte(l_int));delay(1000);
  }
  if(digitalRead(12)==HIGH&&lc==0){lc=1;delay(200);w=1;} if(digitalRead(12)==HIGH&&lc==1){lc=0;delay(200);w=1;}
  if(lc==0){
  l = float(1000000/(4*PI*PI*f*f*c))-l_pop;
  lcd.setCursor(0,0);lcd.print("L = ");
  if(l<=1000){lcd.print(l,1);lcd.print(" uH       ");}
  if(l>1000){lcd.print(l/1000,3);lcd.print(" mH       ");}}
 
    if(lc==1){
c_iz=float(1000000000000/(4*PI*PI*f*f*l_pop*pow(10,-6))-c*pow(10,12));
  lcd.setCursor(0,0);lcd.print("C = ");
  if(c_iz<=1000){lcd.print(c_iz,1);lcd.print(" pF       ");}
  if(c_iz>1000){lcd.print(c_iz/1000,2);lcd.print(" nF       ");}}
w=0;}

В скетче необходимо указать точную емкость эталонного конденсатора:

const float c = 1000.0*pow(10,-12); // == 1000 пФ

 

Конденсатор 0,1 мкФ

Конденсатор 82 пФ

Эталонный конденсатор

Так прибор способен проводить измерения емкости только до 0,5 мкФ, было принято решение немного доработать уст-во. Добавлена еще одна клемма для подключения электролитических конденсаторов емкостью от 0,1 до 10000 мкФ и пара резисторов.

Процесс измерения емкости электролитических конденсаторов достаточно прост, через резистор номиналом 1 кОм подается напряжение 5 В на конденсатор, одновременно аналоговый вход микроконтроллера производит измерение напряжения подаваемое на конденсатор, как только напряжение достигнет 63% от 5 В, микроконтроллер подсчитает время заряда и пересчитает его по формуле: T = RC. Как и в первых двух режимах измерения, можно воспользоваться кнопкой калибровки нуля, для более точного измерения емкости конденсаторов небольшого номинала.

#include <FreqCount.h>
#include <LiquidCrystal.h>
LiquidCrystal lcd(8, 7, 2, 3, 4, 6);// RS,E,D4,D5,D6,D7
#include <EEPROM.h>
 
unsigned long f,time0,time1,time2;
const float c = 1000.0*pow(10,-12);
float l_pop=0.00;
float l,c_iz,c_uf,null0;
int l_int;
byte lc,w;
 
 
void setup() {Serial.begin(9600);lcd.begin(16, 2);// LCD 16X2
  FreqCount.begin(1000);// 1000 мс - время измерения частотомера
  pinMode(13,INPUT);pinMode(12,INPUT);pinMode(A0,INPUT);
  l_pop = float(EEPROM.read(0)*256 + EEPROM.read(1))/100; // eeeprom
}
 
void loop() {
  ///////////////////// F ///////////////////////////////////////////////////
  if(lc<2){lcd.setCursor(0,1);lcd.print("F = ");
  if(FreqCount.available()&&w==0){f = FreqCount.read();lcd.print(f);lcd.print(" Hz      ");}}
  //////////////////// calib 0 //////////////////////////////////////////////
  if(digitalRead(13)==HIGH&&lc<2){
   l_pop = float(1000000/(4*PI*PI*f*f*c));lcd.clear();lcd.setCursor(0,0);lcd.print(" calibration  0 ");
   l_int=round(l_pop*100);EEPROM.update(0,highByte(l_int)); EEPROM.update(1,lowByte(l_int));delay(1000);}
  ///////////////////////// button L/C/Cuf ////////////////////////////////////// 
  if(digitalRead(12)==HIGH){lc++;lcd.clear();w=1;delay(200);if(lc>2){lc=0;}}
  /////////////////// L /////////////////////////////////////////////////////
  if(lc==0){
  l = float(1000000/(4*PI*PI*f*f*c))-l_pop;
  lcd.setCursor(0,0);lcd.print("L = ");
  if(l<=1000){lcd.print(l,1);lcd.print(" uH       ");}
  if(l>1000){lcd.print(l/1000,3);lcd.print(" mH       ");}}
  ////////////////// C pF nF ////////////////////////////////////////////////
    if(lc==1){
c_iz=float(1000000000000/(4*PI*PI*f*f*l_pop*pow(10,-6))-c*pow(10,12));
  lcd.setCursor(0,0);lcd.print("C = ");
  if(c_iz<=1000){lcd.print(c_iz,1);lcd.print(" pF       ");}
  if(c_iz>1000){lcd.print(c_iz/1000,3);lcd.print(" nF       ");}}
  //////////////// C uF /////////////////////////////////////////////////////
      if(lc==2){
    lcd.setCursor(15,0); lcd.print("*");
    pinMode(11,OUTPUT);digitalWrite(11,HIGH);    
  time0=micros();while(analogRead(A0)<644){time2=micros()-time0;if(time2>=10000000){break;}}time1=micros()-time0; 
  while(analogRead(A0)>0){pinMode(11,OUTPUT);digitalWrite(11,LOW);}
  lcd.setCursor(0,0);c_uf=time1;c_uf=c_uf/1000-null0;c_uf=abs(c_uf);
 
   if(time1>=10000000){lcd.setCursor(1,0);lcd.print(" TEST uF   ");}
  else{lcd.print(" C = ");lcd.print(c_uf);lcd.print(" uF       ");}
  if(digitalRead(13)==HIGH){null0=c_uf;lcd.clear();lcd.setCursor(0,0);lcd.print(" calibration  0 ");delay(1000);}
  delay(100);}w=0;}//loop

Форум — http://forum.rcl-radio.ru/viewtopic.php?id=61

Добавить комментарий

Войти с помощью: 

Случайные статьи

  • ЛЮМИНЕСЦЕНТНЫЕ ЛАМПЫ И ИХ ХАРАКТЕРИСТИКИ

    Люминесцентные лампы (ЛЛ) делятся на осветительные общего назначения и специальные. К ЛЛ общего назначения относят лампы мощностью от 15 до 80 Вт с цветовыми и спектральными характеристиками, имитирующими естественный свет различных оттенков. Для классификации ЛЛ специального назначения используют различные параметры. По мощности их разделяют на маломощные (до 15 Вт) и …Подробнее...
  • TDA7317 – стереофонический 5-полосный эквалайзер (Arduino)

    TDA7317 – стереофонический 5-полосный эквалайзер (Arduino)

    TDA7317 – стереофонический 5-полосный эквалайзер с цифровым управлением, позволяющий осуществлять регулировку уровня звука и тембра в пяти полосах 60 Гц, 260 Гц, 1 кГц, 3 кГц, 10 кГц. В связке с Arduino TDA7317 можно сделать функциональный предварительный усилитель с регулировкой тембра по пяти полосам, а если добавить аудиопроцессор например TDA7313 …Подробнее...
  • Простой, универсальный инвертор 12В>220В

    Простой, универсальный инвертор 12В>220В

    На рисунке показана схема простого инвертора, который работает от аккумуляторной батареи 12В и служит источником питания простых бытовых приборов с номинальным рабочим напряжением 220В (50Гц). Схема с элементами показанными на рисунке рассчитана на выходную мощность 300Вт, но применив более мощные транзисторы и диоды, а так же увеличив мощность трансформатора (12+12/220В), …Подробнее...
  • Стерео усилитель 2*20Вт на TDA7262

    Стерео усилитель 2*20Вт на TDA7262

    Стерео усилитель на базе микросхемы TDA7262  относится к классу АВ и используется в основном в бытовой HI-FI технике. Микросхема имеет защиту от КЗ по переменному току, снабжена тепловой защитой: температура срабатывания тепловой защиты 145°С. TDA7262 имеет в своем составе систему STAND-BY которая позволяет избежать шумов и щелчков громкоговорителей в момент …Подробнее...
  • Стерео усилитель для наушников на TPA152

    Стерео усилитель для наушников на TPA152

    Усилитель на TPA152 мощностью 75 мВт имеет КНИ не более 0,01% во всем диапазоне частот. Нагрузка усилителя 32 Ом на канал. Частотный диапазон от 20 до 20000Гц. Усилитель на TPA152 идеально подходит для использования в качестве выходного высококачественного усилителя для наушников. Напряжение питания, В 4,5-5В, максимальное 6В Входное напряжение, В …Подробнее...