| Ваш IP: 3.227.240.143 | Online(24) - гости: 11, боты: 13 | Загрузка сервера: 1.21 ::::::::::::


Регулируемый стабилизатор напряжения с управлением от Arduino

На рисунке показана схеме регулируемого стабилизатора напряжения с управлением от Arduino. Регулируемый стабилизатор питается от нестабилизированного источника постоянного напряжения 28…35 В. Выходное напряжение стабилизатора регулируется от 0 до 25 В, выходной ток до 3 А. В стабилизаторе предусмотрена плавная регулировка выходного напряжения, защита от короткого замыкания выхода и стабилизация тока при превышении заданного значения. Дополнительно применена температурная защита от перегрева выходного транзистора.

Схема стабилизатора напряжения условно поделена на две части, цифровую (Arduino, ЦАП, АЦП, индикатор и кнопки управления) и силовую. В силовой части используется параметрический стабилизатор на 27 В для питания ОУ LM358 который имеет максимальное напряжение питания 32В, что позволяет запитывать схему стабилизатора напряжением выше 32 В. Функцию регулирующего элемента осуществляется транзисторами КТ315Г и КТ825Г которыми управляет ОУ, на инвертирующий вход ОУ подается напряжение пропорциональное выходному, а на неинвертирующий опорное напряжение. Транзистор КТ825Г необходимо установить на теплоотвод площадью не менее 400 кв. см.

Цифровая часть схемы содержит АЦП и ЦАП, выходное напряжение задается 12-битным ЦАП MCP4725, напряжение с которого подается на неинвертирующий вход ОУ LM358, регулировка имеет 4096 ступеней (12 бит). АЦП 16 бит ADS1115 контролирует напряжение шунта, которое при токе 3 А не превышает 300 мВ. АЦП и ЦАП выполнены в виде готовых модулей, которые управляются при помощи шины I2C. Для устранения влияния шунта на выходное напряжение при изменении тока нагрузки, применена программная поправка выходного напряжения.

Температурная защита реализована на цифровом датчике (модуль) DS18B20, датчик необходимо закрепить на транзисторе КТ825Г. При превышении температуры корпуса транзистора больше 85 °С, выходное напряжение стабилизатора будет отключено на 10 секунд. Так же при КЗ выхода стабилизатора выходное напряжение также будет отключено на 10 секунд. При срабатывании защиты на экран выводится соответствующая надпись.

Питание всей цифровой части стабилизатора напряжения подается от интегрального стабилизатора 7805, так как входное напряжение стабилизатора 7805 выше 30 В, то питание на него подается через токоограничивающий резистор 160 Ом. Так же на стабилизатор 7805 необходимо установить небольшой теплоотвод.

Управление стабилизатором достаточно простое, кнопки «плюс» и  «минус» регулируют выходное напряжение, а при нажатии и удержании кнопки «ток» кнопками «плюс» и  «минус» устанавливается выходной ток. При превышении заданного тока, выходной ток перестанет расти и остановится на отметке максимального установленного тока, напряжение при этом уменьшится. Шаг регулировки напряжения 0,1 В, шаг регулировки тока 0,1 А, минимальное значение напряжения 0 В, минимальное значение регулировки тока 0,1 А, измирение тока с разрешением 0,01 А.

#include <Wire.h>
#include <Adafruit_MCP4725.h>
#include <DallasTemperature.h>
#include <EEPROMex.h>
#include <OneWire.h>
#include <Adafruit_ADS1015.h>
#include <LiquidCrystal.h>
   Adafruit_ADS1115 ads;
   Adafruit_MCP4725 MCP4725;
   OneWire oneWire(A2);// вход датчика 18b20
   DallasTemperature t(&oneWire);
   LiquidCrystal lcd(7, 6, 2, 3, 4, 5);// RS,E,D4,D5,D6,D7
 
  int u_dig,i,u_reg,w,w1,I_r;
  unsigned int i_iz;
  float u_max=26.3,I,temp,i_reg,I_old;
  unsigned long time,time1,time2;
  const float kalib2=1.000;// калибровка амперметра
 
void setup(){
 Serial.begin(9600);Wire.begin(); lcd.begin(16, 2);
  pinMode(12,INPUT);// +
  pinMode(11,INPUT);// -
  pinMode(10,INPUT);// ok
   MCP4725.begin(0x60);
   t.begin();t.setResolution(9);//9 бит 
   ads.begin();ads.setGain(GAIN_EIGHT);
   u_dig=EEPROM.read(0)*256+EEPROM.read(1);i_reg=(float)EEPROM.read(2)/10.0;
}
 
void loop(){  
  if(digitalRead(12)==HIGH&&digitalRead(10)==LOW){u_dig+=2;w=1;time1=millis();delay(10);}
  if(digitalRead(11)==HIGH&&digitalRead(10)==LOW){u_dig-=2;w=1;time1=millis();delay(10);}
  if(u_dig>4095){u_dig=4095;}if(u_dig<0){u_dig=0;}
 
  if(digitalRead(12)==HIGH&&digitalRead(10)==HIGH){i_reg=i_reg+0.1;w=1;time1=millis();delay(300);}
  if(digitalRead(11)==HIGH&&digitalRead(10)==HIGH){i_reg=i_reg-0.1;w=1;time1=millis();delay(300);}
  if(i_reg>3){i_reg=3;}if(i_reg<0.1){i_reg=0.1;}I_r=i_reg*10.0;
 
   MCP4725.setVoltage(u_dig-u_reg+16*I, false);
 
  ///////////////////////////////// амперметр /////////////////////////////////////////////
   i_iz = ads.readADC_SingleEnded(0);
   if(i_iz>65000){i_iz=0;}I = i_iz*0.015625*kalib2/100;
 
   ///////////////////////////////////////// защита от КЗ ////////////////////////////////// 
   if(I>3){MCP4725.setVoltage(0, false);lcd.setCursor(0,0);lcd.print(" SHORT CIRCUIT! ");delay(10000);} 
 
   //////////////////////////////////// стабилизация по току + ТЕРМОАЩИТА///////////////////////////////  
   if(w1==1){    if(I>i_reg&&u_dig>0){u_reg=u_reg+10;} if(I==i_reg){}
                 if(I<i_reg&&u_reg>0&&I>0.1){u_reg=u_reg-10;} if(I<0.08){w1=0;u_reg=0;}}
   if(I>i_reg&&u_dig>0&&w1==0){u_reg=u_dig-(u_dig*(i_reg/I));w1=1;MCP4725.setVoltage(u_dig-u_reg, false);}
   if(temp>85){MCP4725.setVoltage(0, false);lcd.setCursor(0,0);lcd.print("HIGH TEMPERATURE");delay(10000);} 
 
  ////////////////////////////////////// eeprom ///////////////////////////////////////////
   if(w==1&&millis()-time>1000){EEPROM.update(0,highByte(u_dig));EEPROM.update(1,lowByte(u_dig));
   EEPROM.update(2,I_r);time=millis();w=0;}
 
  if(millis()-time2>300){
    lcd.setCursor(0,0);lcd.print("U = ");lcd.print((u_dig-u_reg)*u_max/4096,1);lcd.print(" V  ");
    lcd.setCursor(0,1);lcd.print("I = ");lcd.print(abs(I),2);lcd.print(" A  ");
    time2=millis();} lcd.setCursor(11,1);lcd.print(i_reg,1);lcd.print(" A");
 
  ////////////////////// измерение температуры корпуса транзстора ///////
  if(millis()-time1>1000&&I_old==I){ t.requestTemperatures();
   temp=t.getTempCByIndex(0); lcd.setCursor(12,0);lcd.print(temp,0);
   lcd.print(char(223));lcd.print("C     ");time1=millis();}I_old=I;
}

Настройка стабилизатора напряжения:

  • Нажмите кнопку «плюс», подождите когда выходное напряжение достигнет максимального значения, исделайте замер выходного напряжение и укажите его в переменной: u_max=26.3 (в моем случае максимальное напряжение 26,3 В)
  • При использовании шунта с номиналом 0,1 Ом, калибровка тока не потребуется, но если шунт имеет большую погрешность то необходимо изменить коэффициент: kalib2=1.000

При проведении тестирования стабилизатора выло выявлено, что при подсоединении к низкоомной нагрузке при поданном напряжении возникает искрообразование в контактной цепи, что иногда приводит к зависанию Arduino или глюкам экрана. Стало ясно, что возникающая помеха влияет на цифровую часть стабилизатора, для устранения этого недостатка необходимо включить на выходе стабилизатора индуктивный фильтр.

Фильтр выполнен на ферритовом кольце диаметром 3..4 см с магнитной проницаемостью 2000НН, две обмотки намотаны вместе, диаметр провода не менее 0,8 мм, кол-во витков 10-15.

Комментарии

  • om-andrej:

    Подскажите как увеличить выходной ток?

    • liman28:

      Не совсем понятен вопрос, если программно надо изменить предел, то необходимые правки кода я сделаю, но перед этим нужно что бы сам источник питания мог выдавать нужный ток.
      Увеличить выходной ток не трудно, более мощный трансформатор (или имп. ист питания), более мощный диодный мост, и несколько силовых транзисторов подключенных параллельно (коллекторы соединены через резисторы 0,1 Ом)

  • Shah:

    Почему при включении стабилизатора на выходе кратковременно появляется напряжение примерно 13 вольт и через секунду устанавливается ранее установленное напряжение?

    • liman28:

      После:
      MCP4725.begin(0x60);
      вставьте строку:
      MCP4725.setVoltage(0, false);

      • Shah:

        Спасибо, но все по прежнему.

        • liman28:

          В секцию void setup() добавьте:
          time1=millis();

        • liman28:

          Если не получится, то:
          создайте новую переменную int www=1;
          далее замените:
          MCP4725.setVoltage(u_dig-u_reg+16*I, false);
          на:
          if(www==1){MCP4725.setVoltage(0, false);www=0;}
          if(www==0){MCP4725.setVoltage(u_dig-u_reg+16*I, false);}

          • Shah:

            На выводе OUT MCP4725 при включении появляется напряжение 2,5 вольта и через пару секунд 1 вольт.

            • liman28:

              это понятно, мне не понятно на каком участке программы это происходит, если до инициации цап, то можно можно подать лог ноль на вход оу, а после убрать. или же это происходит в основном цикле программы.

              • Shah:

                Да, это происходит до инициализации ЦАП

                • liman28:

                  можно подать лог ноль на вход оу, пока происходит инициация

                  void setup(){
                  Serial.begin(9600);Wire.begin(); lcd.begin(16, 2);
                  pinMode(12,INPUT);// +
                  pinMode(11,INPUT);// —
                  pinMode(10,INPUT);// ok
                  pinMode(9,OUTPUT);
                  digitalWrite(9,LOW);
                  MCP4725.begin(0x60);
                  MCP4725.setVoltage(0, false);
                  delay(1000);
                  pinMode(9,INPUT);
                  t.begin();t.setResolution(9);//9 бит
                  ads.begin();ads.setGain(GAIN_EIGHT);
                  u_dig=EEPROM.read(0)*256+EEPROM.read(1);i_reg=(float)EEPROM.read(2)/10.0;
                  }

                  С 9 ЦИФРОВОГО ВЫХОДА ЧЕРЕЗ РЕЗИСТОР 1К КИНУТЬ ПРОВОД НА 3 НОЖКУ L358, ПРИ СТАРТЕ ЛОГ НОЛЬ С 9 ВЫХОДА БУДЕТ ДЕРЖАТЬ ВЫХОД ОУ НА НУЛЕ ПОКА НЕ ИНИЦИЛИРУЕТСЯ ЦАП. ДАЛЕЕ ВЫВОД 9 ПЕРЕХОДИТ В РЕЖИМ ИЗМЕРЕНИЯ И ИМЕЕТ ОЧЕНЬ ВЫСОКОЕ ВХОДНОЕ СОПРОТИВЛЕНИЕ И НЕ ВЛИЯЕТ НА ЦАП.
                  ДРУГОГО РЕШЕНИЯ ПРОБЛЕМЫ Я НЕ ВИЖУ, МОЖНО КОНЕЧНО ВЫХОД ИСТОЧНИКА ПИТАНИЯ ОТКЛЮЧАТЬ ЧЕРЕЗ РЕЛЕ НА 3 СЕК, НО НЕ ХОЧЕТСЯ В СХЕМУ ДОБАВЛЯТЬ НОВЫХ КОМПОНЕНТОВ.

                  • Shah:

                    Теперь на секунду напряжение поднимается до 13 вольт, затем на секунду падает до нуля и потом устанавливается предустановленное напряжение. Может стоит на 3 ножку поставить транзистор с эл.конденсатором, чтобы получилась задержка?

                    • liman28:

                      А что если просто вывод 3 оу притянуть к земле через резистор 100К или меньше, если не поучится тогда можно поставить транзистор, главное что бы он не влиял на цап.

                  • Shah:

                    Собрал схему для задержки подачи питания на LM358. Всё работает нормально.

          • liman28:

            наверное напряжение 13В появляется до инициации ЦАП, чтобы это проверить замените код:
            void setup(){
            Serial.begin(9600);Wire.begin(); lcd.begin(16, 2);
            pinMode(12,INPUT);// +
            pinMode(11,INPUT);// —
            pinMode(10,INPUT);// ok
            MCP4725.begin(0x60);
            t.begin();t.setResolution(9);//9 бит
            ads.begin();ads.setGain(GAIN_EIGHT);
            u_dig=EEPROM.read(0)*256+EEPROM.read(1);i_reg=(float)EEPROM.read(2)/10.0;
            на
            void setup(){
            Serial.begin(9600);Wire.begin(); lcd.begin(16, 2);
            pinMode(12,INPUT);// +
            pinMode(11,INPUT);// —
            pinMode(10,INPUT);// ok
            MCP4725.begin(0x60);
            MCP4725.setVoltage(0, false);
            delay(10000);
            t.begin();t.setResolution(9);//9 бит
            ads.begin();ads.setGain(GAIN_EIGHT);
            u_dig=EEPROM.read(0)*256+EEPROM.read(1);i_reg=(float)EEPROM.read(2)/10.0;

            если это так, то при включении должно быть напряжение 13В, далее 0 в течении 10 секунд и потом предустановленное напряжение.

  • Принципиально ли использование КТ825г?Можно ли заменить например на MJ11015G или на что ещё

  • какая мощность шунта-резистора?

Добавить комментарий

Войти с помощью: 

Случайные статьи

  • ЛЮМИНЕСЦЕНТНЫЕ ЛАМПЫ И ИХ ХАРАКТЕРИСТИКИ

    Люминесцентные лампы (ЛЛ) делятся на осветительные общего назначения и специальные. К ЛЛ общего назначения относят лампы мощностью от 15 до 80 Вт с цветовыми и спектральными характеристиками, имитирующими естественный свет различных оттенков. Для классификации ЛЛ специального назначения используют различные параметры. По мощности их разделяют на маломощные (до 15 Вт) и …Подробнее...
  • TDA7317 – стереофонический 5-полосный эквалайзер (Arduino)

    TDA7317 – стереофонический 5-полосный эквалайзер (Arduino)

    TDA7317 – стереофонический 5-полосный эквалайзер с цифровым управлением, позволяющий осуществлять регулировку уровня звука и тембра в пяти полосах 60 Гц, 260 Гц, 1 кГц, 3 кГц, 10 кГц. В связке с Arduino TDA7317 можно сделать функциональный предварительный усилитель с регулировкой тембра по пяти полосам, а если добавить аудиопроцессор например TDA7313 …Подробнее...
  • Простой, универсальный инвертор 12В>220В

    Простой, универсальный инвертор 12В>220В

    На рисунке показана схема простого инвертора, который работает от аккумуляторной батареи 12В и служит источником питания простых бытовых приборов с номинальным рабочим напряжением 220В (50Гц). Схема с элементами показанными на рисунке рассчитана на выходную мощность 300Вт, но применив более мощные транзисторы и диоды, а так же увеличив мощность трансформатора (12+12/220В), …Подробнее...
  • Стерео усилитель 2*20Вт на TDA7262

    Стерео усилитель 2*20Вт на TDA7262

    Стерео усилитель на базе микросхемы TDA7262  относится к классу АВ и используется в основном в бытовой HI-FI технике. Микросхема имеет защиту от КЗ по переменному току, снабжена тепловой защитой: температура срабатывания тепловой защиты 145°С. TDA7262 имеет в своем составе систему STAND-BY которая позволяет избежать шумов и щелчков громкоговорителей в момент …Подробнее...
  • Стерео усилитель для наушников на TPA152

    Стерео усилитель для наушников на TPA152

    Усилитель на TPA152 мощностью 75 мВт имеет КНИ не более 0,01% во всем диапазоне частот. Нагрузка усилителя 32 Ом на канал. Частотный диапазон от 20 до 20000Гц. Усилитель на TPA152 идеально подходит для использования в качестве выходного высококачественного усилителя для наушников. Напряжение питания, В 4,5-5В, максимальное 6В Входное напряжение, В …Подробнее...