| Ваш IP: 34.237.138.69 | Online(9) - гости: 5, боты: 4 | Загрузка сервера: 1.03 ::::::::::::


Регулируемый стабилизатор напряжения с управлением от Arduino

На рисунке показана схеме регулируемого стабилизатора напряжения с управлением от Arduino. Регулируемый стабилизатор питается от нестабилизированного источника постоянного напряжения 28…35 В. Выходное напряжение стабилизатора регулируется от 0 до 25 В, выходной ток до 3 А. В стабилизаторе предусмотрена плавная регулировка выходного напряжения, защита от короткого замыкания выхода и стабилизация тока при превышении заданного значения. Дополнительно применена температурная защита от перегрева выходного транзистора.

Схема стабилизатора напряжения условно поделена на две части, цифровую (Arduino, ЦАП, АЦП, индикатор и кнопки управления) и силовую. В силовой части используется параметрический стабилизатор на 27 В для питания ОУ LM358 который имеет максимальное напряжение питания 32В, что позволяет запитывать схему стабилизатора напряжением выше 32 В. Функцию регулирующего элемента осуществляется транзисторами КТ315Г и КТ825Г которыми управляет ОУ, на инвертирующий вход ОУ подается напряжение пропорциональное выходному, а на неинвертирующий опорное напряжение. Транзистор КТ825Г необходимо установить на теплоотвод площадью не менее 400 кв. см.

Цифровая часть схемы содержит АЦП и ЦАП, выходное напряжение задается 12-битным ЦАП MCP4725, напряжение с которого подается на неинвертирующий вход ОУ LM358, регулировка имеет 4096 ступеней (12 бит). АЦП 16 бит ADS1115 контролирует напряжение шунта, которое при токе 3 А не превышает 300 мВ. АЦП и ЦАП выполнены в виде готовых модулей, которые управляются при помощи шины I2C. Для устранения влияния шунта на выходное напряжение при изменении тока нагрузки, применена программная поправка выходного напряжения.

Температурная защита реализована на цифровом датчике (модуль) DS18B20, датчик необходимо закрепить на транзисторе КТ825Г. При превышении температуры корпуса транзистора больше 85 °С, выходное напряжение стабилизатора будет отключено на 10 секунд. Так же при КЗ выхода стабилизатора выходное напряжение также будет отключено на 10 секунд. При срабатывании защиты на экран выводится соответствующая надпись.

Питание всей цифровой части стабилизатора напряжения подается от интегрального стабилизатора 7805, так как входное напряжение стабилизатора 7805 выше 30 В, то питание на него подается через токоограничивающий резистор 160 Ом. Так же на стабилизатор 7805 необходимо установить небольшой теплоотвод.

Управление стабилизатором достаточно простое, кнопки «плюс» и  «минус» регулируют выходное напряжение, а при нажатии и удержании кнопки «ток» кнопками «плюс» и  «минус» устанавливается выходной ток. При превышении заданного тока, выходной ток перестанет расти и остановится на отметке максимального установленного тока, напряжение при этом уменьшится. Шаг регулировки напряжения 0,1 В, шаг регулировки тока 0,1 А, минимальное значение напряжения 0 В, минимальное значение регулировки тока 0,1 А, измирение тока с разрешением 0,01 А.

#include <Wire.h>
#include <Adafruit_MCP4725.h>
#include <DallasTemperature.h>
#include <EEPROMex.h>
#include <OneWire.h>
#include <Adafruit_ADS1015.h>
#include <LiquidCrystal.h>
   Adafruit_ADS1115 ads;
   Adafruit_MCP4725 MCP4725;
   OneWire oneWire(A2);// вход датчика 18b20
   DallasTemperature t(&oneWire);
   LiquidCrystal lcd(7, 6, 2, 3, 4, 5);// RS,E,D4,D5,D6,D7
 
  int u_dig,i,u_reg,w,w1,I_r;
  unsigned int i_iz;
  float u_max=26.3,I,temp,i_reg,I_old;
  unsigned long time,time1,time2;
  const float kalib2=1.000;// калибровка амперметра
 
void setup(){
 Serial.begin(9600);Wire.begin(); lcd.begin(16, 2);
  pinMode(12,INPUT);// +
  pinMode(11,INPUT);// -
  pinMode(10,INPUT);// ok
   MCP4725.begin(0x60);
   t.begin();t.setResolution(9);//9 бит 
   ads.begin();ads.setGain(GAIN_EIGHT);
   u_dig=EEPROM.read(0)*256+EEPROM.read(1);i_reg=(float)EEPROM.read(2)/10.0;
}
 
void loop(){  
  if(digitalRead(12)==HIGH&&digitalRead(10)==LOW){u_dig+=2;w=1;time1=millis();delay(10);}
  if(digitalRead(11)==HIGH&&digitalRead(10)==LOW){u_dig-=2;w=1;time1=millis();delay(10);}
  if(u_dig>4095){u_dig=4095;}if(u_dig<0){u_dig=0;}
 
  if(digitalRead(12)==HIGH&&digitalRead(10)==HIGH){i_reg=i_reg+0.1;w=1;time1=millis();delay(300);}
  if(digitalRead(11)==HIGH&&digitalRead(10)==HIGH){i_reg=i_reg-0.1;w=1;time1=millis();delay(300);}
  if(i_reg>3){i_reg=3;}if(i_reg<0.1){i_reg=0.1;}I_r=i_reg*10.0;
 
   MCP4725.setVoltage(u_dig-u_reg+16*I, false);
 
  ///////////////////////////////// амперметр /////////////////////////////////////////////
   i_iz = ads.readADC_SingleEnded(0);
   if(i_iz>65000){i_iz=0;}I = i_iz*0.015625*kalib2/100;
 
   ///////////////////////////////////////// защита от КЗ ////////////////////////////////// 
   if(I>3){MCP4725.setVoltage(0, false);lcd.setCursor(0,0);lcd.print(" SHORT CIRCUIT! ");delay(10000);} 
 
   //////////////////////////////////// стабилизация по току + ТЕРМОАЩИТА///////////////////////////////  
   if(w1==1){    if(I>i_reg&&u_dig>0){u_reg=u_reg+10;} if(I==i_reg){}
                 if(I<i_reg&&u_reg>0&&I>0.1){u_reg=u_reg-10;} if(I<0.08){w1=0;u_reg=0;}}
   if(I>i_reg&&u_dig>0&&w1==0){u_reg=u_dig-(u_dig*(i_reg/I));w1=1;MCP4725.setVoltage(u_dig-u_reg, false);}
   if(temp>85){MCP4725.setVoltage(0, false);lcd.setCursor(0,0);lcd.print("HIGH TEMPERATURE");delay(10000);} 
 
  ////////////////////////////////////// eeprom ///////////////////////////////////////////
   if(w==1&&millis()-time>1000){EEPROM.update(0,highByte(u_dig));EEPROM.update(1,lowByte(u_dig));
   EEPROM.update(2,I_r);time=millis();w=0;}
 
  if(millis()-time2>300){
    lcd.setCursor(0,0);lcd.print("U = ");lcd.print((u_dig-u_reg)*u_max/4096,1);lcd.print(" V  ");
    lcd.setCursor(0,1);lcd.print("I = ");lcd.print(abs(I),2);lcd.print(" A  ");
    time2=millis();} lcd.setCursor(11,1);lcd.print(i_reg,1);lcd.print(" A");
 
  ////////////////////// измерение температуры корпуса транзстора ///////
  if(millis()-time1>1000&&I_old==I){ t.requestTemperatures();
   temp=t.getTempCByIndex(0); lcd.setCursor(12,0);lcd.print(temp,0);
   lcd.print(char(223));lcd.print("C     ");time1=millis();}I_old=I;
}

Настройка стабилизатора напряжения:

  • Нажмите кнопку «плюс», подождите когда выходное напряжение достигнет максимального значения, исделайте замер выходного напряжение и укажите его в переменной: u_max=26.3 (в моем случае максимальное напряжение 26,3 В)
  • При использовании шунта с номиналом 0,1 Ом, калибровка тока не потребуется, но если шунт имеет большую погрешность то необходимо изменить коэффициент: kalib2=1.000

При проведении тестирования стабилизатора выло выявлено, что при подсоединении к низкоомной нагрузке при поданном напряжении возникает искрообразование в контактной цепи, что иногда приводит к зависанию Arduino или глюкам экрана. Стало ясно, что возникающая помеха влияет на цифровую часть стабилизатора, для устранения этого недостатка необходимо включить на выходе стабилизатора индуктивный фильтр.

Фильтр выполнен на ферритовом кольце диаметром 3..4 см с магнитной проницаемостью 2000НН, две обмотки намотаны вместе, диаметр провода не менее 0,8 мм, кол-во витков 10-15.

Комментарии

Добавить комментарий

Войти с помощью: 

Случайные статьи

  • Стабилизаторы напряжения с малым током потребления

    Стабилизаторы напряжения с малым током потребления

    Стабилизаторы могут найти применение в различных конструкциях с автономным питанием при потребляемом нагрузкой токе до 200 мА. Потребляемый стабилизаторами ток не превышает 20 мкА во всем диапазоне входного напряжения и тока нагрузки. В ряде случаев описываемые стабилизаторы вполне смогут заменить современные интегральные КМОП стабилизаторы. На рис. 1 приведена схема экономичного …Подробнее...
  • Переговорное уст-во

    Переговорное уст-во

    Переговорное уст-во представляет собой два одинаковых блока, в которых содержится микрофонный усилитель выполненный на 2-х транзисторах, реле переключения прием-передача и усилитель звуковой частоты на LM380 с выходной мощностью 2,5 Вт на нагрузке 8 Ом. Помимо всего каждый переговорный блок имеет собственный трансформаторный источник питания. Блоки соединены между собой двумя проводами — …Подробнее...
  • К1278ЕР1хП — РЕГУЛИРУЕМЫЙ «LOW DROP» СТАБИЛИЗАТОР ПОЛОЖИТЕЛЬНОГО НАПРЯЖЕНИЯ

    К1278ЕР1хП — РЕГУЛИРУЕМЫЙ «LOW DROP» СТАБИЛИЗАТОР ПОЛОЖИТЕЛЬНОГО НАПРЯЖЕНИЯ

    Серия регулируемых стабилизаторов положительного напряжения К1278ЕР1хП предназначена для обеспечения работы при минимальной разности напряжений вход-выход, причем падение напряжения полностью является функцией тока нагрузки. Максимальное значение падения напряжения гарантируется при максимальном выходном токе, при более низких токах нагрузки оно уменьшается. Это достигнуто применением составного PNP-NPN выходного транзистора. Встроенная подстройка позволяет регулировать опорное напряжение с точностью до …Подробнее...
  • Стабилизатор на 5В с отключением

    Данный стабилизатор выдает стабилизированное напряжение 5В до 1А с защитой по току. Выходное напряжение устанавливается подбором R6.  В микросхеме К142ЕН5 имеется возможность выключения стабилизатора, при подачи напряжения на вывод 9 через R6 в пределах 2…3В, напряжение на выходе стабилизатора становиться равным нулю. Литература — — Конструкции юных радиолюбителей. М. Радио …Подробнее...
  • Литий-ионный аккумулятор (Li-ion)

    Литий-ионный аккумулятор (Li-ion)

    Литий-ионный аккумуляторы (Li-ion)  широко распространены в современной бытовой технике и электронике. Особенно популярен этот тип аккумуляторов в сотовых телефонах, ноутбуках, цифровых фотоаппаратах и другой малогабаритной технике. Современные Li-ion аккумуляторы имеют высокие удельные характеристики: 100-180 Втч/кг и 250-400 Втч/л. Рабочее напряжение — 3,5-3,7 В. Характеристики литий-ионных аккумуляторов зависят от химического состава составляющих …Подробнее...