| Ваш IP: 3.236.96.157 | Online(35) - гости: 21, боты: 14 | Загрузка сервера: 1.39 ::::::::::::


Регулируемый стабилизатор напряжения с защитой по току (Arduino)

За основу регуляруемого стабилизатора свята схема со траницы https://rcl-radio.ru/?p=57426 , схема достаточно простая и содержит минимальный набор элементов. Выходное напряжение регулируемого стабилизатора можно регулировать от 0 до 25 В при максимальном токе 3 А. Используя Arduino можно заметно расширить функционал стабилизатора, сделать индикацию и защиту по току и КЗ, добавив дополнительно аналоговый датчик тока ACS712, и цифровой датчик температуры 18B20 для контроля температуры корпуса силового транзистора.

Как видно на изображении, на индикатор выводится текущее напряжение и ток, температура корпуса силового транзистора и значение тока при котором сработает защита. Помимо токовой защиты имеется еще защита от перегрева силового транзистора, при температуре более 85 ºС напряжение будет сброшено до 0 В в течении 5 секунд, а на индикаторе высветится надпись «ERROR». Ток защиты устанавливается при помощи кнопок «+» и «-«, от 0,1 А до 3 А с шагом 0,1 А. При достижении выходного тока стабилизатора и тока защиты, выходное напряжение сбрасывается до 0 В, то же самое происходит при КЗ. Как и при тепловой защите на экран выводится надпись «ERROR». Защита активна в течении 5 секунд.

Схема стабилизатора напряжения условно поделена на две части, цифровую (Arduino+индикатор и кнопки управления) и силовую. В силовой части используется два параметрических стабилизатора на 5,6 В для опрного источника и 27 В для питания ОУ LM358 который имеет максимальное напряжение питания 32В, что позволяет запитывать схему стабилизатора напряжением выше 32 В.

Транзистор КТ825Г необходимо установить на теплоотвод площадью не менее 400 кв. см. Переменный резистор R5 задающий выходное напряжение стабилизатора желательно применить многооборотный, если такой возможности нет, то регулировку выходного напряжения необходимо разделить на грубую и плавную, применив для этой цели два резистора.

Напряжение с точки соединения R1 и R2 подается на аналоговый вход Arduino A0 которое не превышает 4,7 В при выходном напряжении стабилизатора 25 В. С датчика тока (модуль) ACS712 напряжение подается на вход А1, а цифровой датчик (модуль) температуры (крепится непосредственно на корпус силового транзистора) подключается к выходу А2. Управление защитой осуществляется при помощи аналого выхода D12, при срабатывании защиты на выходе D12 устанавливается логический ноль который подается на неинвертирующий вход ОУ, что приводит к закрыванию силового транзистора и напряжение на выходе становится равным нулю.

Библиотеки:

ACS712.zip

DallasTemperature.h

OneWire.h

#include <LiquidCrystal.h>
#include <OneWire.h>
#include <DallasTemperature.h>
#include <ACS712.h>
#include <EEPROMex.h>
  LiquidCrystal lcd(7, 6, 2, 3, 4, 5);// RS,E,D4,D5,D6,D7
  OneWire oneWire(A2);// вход датчика 18b20
  DallasTemperature t(&oneWire);
  ACS712 sensor(ACS712_05B, A1); // тип датчика ACS712_05B
  float U,I,i_reg,temp;
  float i_iz,i_sum,u_iz,u_sum;
  float kalib_u=5.32; 
  int temp_error=85;
  unsigned long time,time1,time2,time3;
  int w,i,i1,reg;
 
void setup(){ 
  Serial.begin(9600);lcd.begin(16, 2);//sensor.calibrate();
  t.begin();t.setResolution(9);//9 бит 
  pinMode(A0,INPUT);// U = 0...25 V
  pinMode(10,INPUT);pinMode(11,INPUT);//+ - 
  pinMode(11,INPUT);
  i_reg=EEPROM.read(0)/10.0;
}
 
void loop() {
  if(digitalRead(10)==HIGH){i_reg=i_reg+0.1;delay(200);w=1;}
  if(digitalRead(11)==HIGH){i_reg=i_reg-0.1;delay(200);w=1;}
  if(i_reg<=0){i_reg=0.1;}if(i_reg>3){i_reg=3;}
  ////////////////// измирение напряжения, вход А0 ////////////////////
  u_iz=analogRead(A0);i1++;u_sum=u_sum+u_iz;
  if(i1==10){U=u_sum/10;u_sum=0;i1=0;}
  if(millis()-time>200){
  U = U*5.00*kalib_u/1023;
  lcd.setCursor(0,0);lcd.print("U = ");lcd.print(U,1);lcd.print(" V  ");
  time=millis();}
////////////////////// измерение температуры корпуса транзстора ///////
  if(millis()-time1>1000){ t.requestTemperatures();
  temp=t.getTempCByIndex(0);
  lcd.setCursor(12,0);lcd.print(temp,0);
  lcd.print(char(223));lcd.print("C     ");
  time1=millis();
  }
/////////////////////// измерение тока ///////////////////////////////
  i_iz = sensor.getCurrentDC();i++;i_sum=i_sum+i_iz; // измерение
  if(i==10){I=i_sum/10;i_sum=0;i=0;}
  if(millis()-time2>300){lcd.setCursor(0,1);if(I<=0){I=0;}
  lcd.print("I = ");lcd.print(I,1);lcd.print(" A  ");
  time2=millis();}
///////////////////// вывод рег тока ///////////////////////
  lcd.setCursor(11,1);lcd.print(i_reg,1);lcd.print(" A");
  if(I>i_reg||temp>temp_error||i_iz>i_reg+0.5){pinMode(12,OUTPUT);digitalWrite(12,LOW);
  lcd.setCursor(11,1);lcd.print("ERROR");delay(5000);I=0;U=0;
  pinMode(12,INPUT);}
  ///////////////////// eeprom ///////////////////////////
  if(w==1&&millis()-time3>10000){reg=i_reg*10.0;EEPROM.update(0,reg);w=0;time3=millis();}
}

Значение тока защиты сохраняется в энергонезависимой памяти через 10 секунд после регулировки тока. Стабилизатор напряжения в настройке практически не нуждается, необходима лишь калибровка при помощи скетча, при помощи следующих переменных:

  • float kalib_u=5.32;
  • int temp_error=85;

Первая переменная калибрует напряжение выводимое на индикатор, вторая переменная отвечает за температурную защиту.

Комментарии

Добавить комментарий

Войти с помощью: 

Случайные статьи

  • ФНЧ для сабвуфера

    ФНЧ для сабвуфера

    На рисунке показана простая схема ФНЧ для сабвуфера. В схеме используется ОУ ua741. Схема достаточно проста, имеет низкую стоимость и не нуждается в настройке после сборки. Частота среза ФНЧ 80 Гц. Для работы ФНЧ для сабвуфера необходим двухполярный источник питания ±12 В.Подробнее...
  • Игра «Электронный лототрон»

    Игра «Электронный лототрон»

    На рис. 1 изображена принципиальная схема лототрона. Она содержит задающий генератор на частоту несколько килогерц (DD1.1-DD1.3), счетчик DD2, дешифратор DD3, к выходам которого подключен цифровой индикатор HG1. Пока кнопка SB1 не нажата, импульсы с выхода задающего генератора подаются на счетчик DD2 и многократно его переполняют. В результате светятся все сегменты …Подробнее...
  • HI-FI усилитель с эквалайзером для аудиоцентра

    HI-FI усилитель с эквалайзером для аудиоцентра

    Усилитель с эквалайзером может питаться напряжением от 6 до 18В, но надо учитывать то обстоятельство что мощность усилителя напрямую зависит от напряжения, поэтому только при напряжении 18В усилитель будет выдавать полную мощность. Основные характеристики: Максимальная мощность на нагрузке 2Ом при напряжении питания 18В — 2*30Вт Максимальная мощность на нагрузке 4Ом …Подробнее...
  • РАБОТА ТРЕХФАЗНОГО АСИНХРОННОГО ДВИГАТЕЛЯ ОТ CEТИ ОДНОФАЗНОГО ТОКА, СПОСОБЫ ПУСКА

    РАБОТА ТРЕХФАЗНОГО АСИНХРОННОГО ДВИГАТЕЛЯ ОТ CEТИ ОДНОФАЗНОГО ТОКА, СПОСОБЫ ПУСКА

    Трехфазный асинхронный двигатель нормального исполнения может создавать вращающий момент без принятия специальных мер при питании от сети однофазного тока. Предположим, что цепь одного из проводов работающего двигателя, присоединенного к трехфазной сети, разомкнулась (например, вследствие перегорания плавкой вставки предохранителя). Машина, оказавшаяся в однофазном режиме с последовательным или последовательно-параллельным соединением обмоток статора …Подробнее...
  • К1460УД2х — СДВОЕННЫЙ МОЩНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ

    К1460УД2х — СДВОЕННЫЙ МОЩНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ

    К1460УД2х – интегральная микросхема представляет собой сдвоенный мощный операционный усилитель, пригодная для использования в качестве мощного ОУ в широком диапазоне областей применения, хорошо подходит для управления индуктивными нагрузками, в частности, для управления электродвигателями постоянного тока. Микросхема К1460УД2Рх является прямым аналогом микросхемы TCA0372 фирмы «MOTOROLA». ОСОБЕННОСТИ • Выходной ток до 1.0 А • Скорость нарастания …Подробнее...