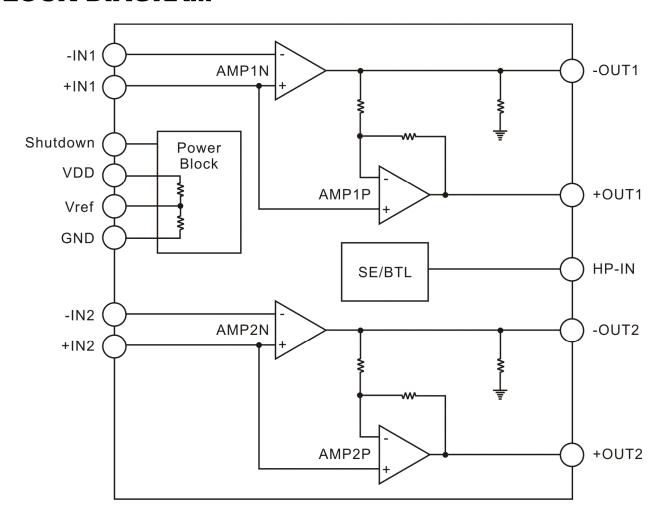
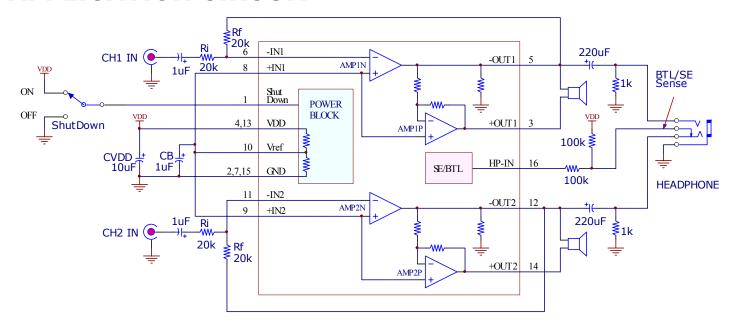
DESCRIPTION

The PT2303 is a power amplifier utilizing CMOS Technology specially designed for audio purpose. It can deliver 2W × 2 power output to the 5V power voltage. The power consumption is very low in stand-by. Total harmonic distortion is lower than 0.03%. The output mode can be switched between the SE (Single-Ended) or BTL (Bridge-Tied Load) mode. Built-in over-temperature protection, package size is not occupies PCB space. It is suitable for small or portable products.


APPLICATIONS

- LCD monitor (for TV)
- Portable audio
- Multimedia speakers
- Other audio applications

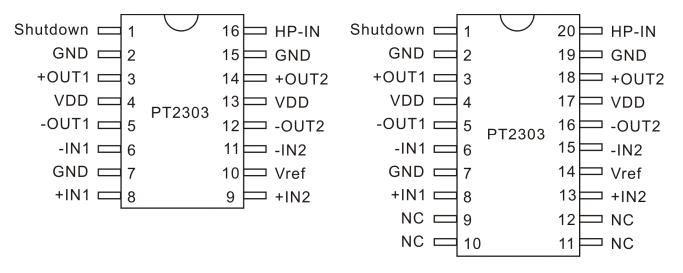

FEATURES

- CMOS Technology
- · Stereo input
- Output power 2W × 2 (4 Ω)
- Low harmonics distortion (0.03%)
- SE and BTL modes operation
- Suppress the pop and click noise when mode changed
- Shutdown function, turn on can into save mode (Icc<0.5µA)
- Built-in overheat protect

BLOCK DIAGRAM

APPLICATION CIRCUIT

ORDER INFORMATION


Valid Part Number	Package Type	Top Code
PT2303-D	16 Pins, DIP, 300mil	PT2303-D
PT2303-S	16 Pins, SOP, 300mil	PT2303-S
PT2303-TX	20 Pins, TSSOP, 173mil	PT2303-TX
PT2303-HT	20 Pins, HTSSOP,173mil	PT2303-HT

V1.3 2 December 2010

PIN CONFIGURATION

16 PINS FOR PT2303-D AND PT2303-S

20 PINS FOR PT2303-TX AND PT2303-HT

PIN DESCRIPTION

Din Nama	Pin Name I/O Description		Pin	No.
Pin Name	1/0	Description	16 Pins	20 Pins
Shutdown	I	Shutdown pin Entire IC into the shutdown mode when this pin connected to the Vcc	1	1
GND	-	Ground	2	2
+OUT1	0	Channel 1 output (+)	3	3
VDD	-	Supply voltage input	4	4
-OUT1	0	Channel 1 output (-)	5	5
-IN1		Channel 1 input (-)	6	6
GND	ı	Ground	7	7
+IN1	I	Channel 1 input (+)	8	8
+IN2	I	Channel 2 input (+)	9	13
Vref	I	Bias reference bypassing	10	14
-IN2	I	Channel 2 input (-)	11	15
-OUT2	0	Channel 2 output (-)	12	16
VDD	-	Supply voltage input	13	17
+OUT2	0	Channel 2 output (+)	14	18
GND	-	Ground	15	19
HP-IN	ı	Output mode select, connected to the VDD for SE mode or GND for BTL mode	16	20
NC	-	No Connect	_	9 ~ 12

FUNCTION DESCRIPTION

POWER SUPPLY

The operating voltage of PT2303 is from 3V to 5V, In general operation 5V is recommended, it can deliver higher power output. When the supply voltage less then 3V the IC can work properly, but the distortion will rise. After the supply voltage exceed 6V the temperature of package outside will rising quickly due to higher stand-by current consumption.

SHUTDOWN

When the supply still powered the chip, pull-up the shutdown pin to VDD level will take chip into the shutdown mode. After the shutdown mode is active, the total current consumption is less than $0.5\mu A$ and the all of input or output pins no voltage output. When shutdown pin set to GND, the IC is back to the normal operation.

Shutdown Pin	Output State
VDD	Shutdown ON
GND	Normal

VOLTAGE GAIN ADJUST

The output stage structure of the PT2303 is Bridge Tied Loaded (BTL), the close loop voltage gain can be get from following formula.

Gain= $20\log (Rf \div Ri) + 6dB$

The close loop gain can be adjusted by external resistance, in general purpose the 6dB gain setting is recommended, please reference to the application circuit. If the amplitude of input voltage in lower level (ex. <2Vpp), it can raise the voltage gain to get enough power output. Recommended of the minimum series resistance (Ri) is $10K\Omega$ to ensure IC have appropriate input impedance. Please refer to following table.

External Resistance	Gain=0dB	Gain=6dB	Gain=12dB
Ri	20ΚΩ	20ΚΩ	10ΚΩ
Rf	10ΚΩ	20ΚΩ	20ΚΩ

If the amplitude of input signal exceed the VDD-GND range, or voltage gain setup too high, the input stage is very easy overload and distorted. Please make sure the amplitude of audio source (Vin) and setting the best gain value, in general use the gain setup to +6dB is recommended. Please refer to following table.

Operating Voltage	Gain=0dB	Gain=6dB	Gain=12dB
VDD=3V	Vin<5Vpp	Vin<2.5Vpp	Vin<1.25Vpp
VDD=5V	Vin<8Vpp	Vin<4Vpp	Vin<2Vpp

SE/BTL MODE SWITCHING

PT2303 have two output modes, SE (Single-Ended) or BTL (Bridge-Tied Load). When driving a 4Ω speaker load suggestion set to the BTL mode for get the more power output. And driving a 32Ω headphone load, it can be set to SE mode and turn-off the un-work amplifier to decrease stand-by power consumption. Switching between the SE/BTL modes is controlled by the HP-IN pin, please refer to following table:

HP-IN	Output Mode
VDD	SE
GND	BTL

OVER TEMPERATURE PROTECTION

The PT2303 has a built-in over temperature protection circuit, it will turn off all output when the chip temperature over 130° C, the chip will return to normal operation automatically after the temperature cool down to 100° C.

POP AND CLICK SURPRESS

A power amplifier uses single supply voltage may almost have inrush noise on output in the power-on/off period. It is because of the output DC potential needs time to stable on 1/2VDD, the period relative with the capacitance (CB) on the Vref pin. Larger CB value will extend the stable time, and also can suppress the noise happened in power-on. In supply voltage=5V and CB=2.2 μ F, stable time is about 300mS. The value of CB also relative with the value of the DC blocking capacitor connected in input terminal. In general condition the time constant of DC blocking capacitor should be less than CB stable time. The recommended value of DC blocking capacitor is 1 μ F, and the capacitor of output terminal connected to 32 Ω headphone is 220 μ F. Smaller capacitance can shorten the charge time to suppress the pop noise, both the input and output capacitance will limited the low frequency extend range.

HEAT DISSIPATION

In normal operating, PT2303 needs at least 2 sq inch PCB for heat dissipate; it should be use whole copper foil to cover on it for enough heat dissipation space. We suggest using two-layer PCB for better heat dissipation. The track connected to the output and power pin of IC should be as thick as possible for better heat dissipation ability. If IC doesn't have enough heat dissipation space (>1 sq inch), and IC is always in full power output situation, an additional heat sink should placed on the chip.

V1.3 5 December 2010

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Min.	Max.	Unit
Supply voltage	VDD		0	7	V
Operating temperature	Topr		-40	+85	$^{\circ}\!\mathbb{C}$
Storage temperature	Tstg		-65	+150	$^{\circ}\!\mathbb{C}$
Maximum input voltage	Vimax		-0.3	Vcc+0.3	V
Maximum input current	limax	See Note	-10	+10	mA

Note: Input pins surge current can be reached 100mA will not induce the CMOS latched up.

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, VDD=5V, bandwidth=22~22KHz)

Unless otherwise specified, VDD=5 Parameter	Symbol		Cond	ition	Min.	Тур.	Max.	Unit
Supply voltage	VDD		Oona	ition	3	5	6	\ \
Cupply voltage	VDD	SE Mode			4	6	10	_ v
Operating current	ls	BTL Mo			6	8	12	mA
Operating current	13	Shutdov			0.1	0.5	1	μA
Two channels gain error	Gerr	Ri=Rf=2			<u>-1</u>	0.5	+1	dΒ
TWO CHAITHEIS GAIN EITOI	Gen		W, RL=49	<u> </u>	0.03	0.05	0.07	UD
THD+N	THD		, RL=4Ω	.2	0.05	0.03	0.07	%
TTID+N	טווו		, RL=4 <u>02</u> nW, RL=0	220	0.00	0.05	0.13	/0
		FU-301		%, RL=8Ω	1.0	1.1	1.2	
				%, RL=8Ω	1.2	1.4	1.6	1
		BTL		,	1.4	1.6	1.8	W
Power output	Ро	Po		%, RL=4Ω 0%, RL=4Ω	1.4	2.0	2.1	ł
		SE						
			THD=1%, RL=32Ω THD=10%, RL=32Ω		80	85	90	mW
Cinnal to Naina	CNID	A \A/=:=		U%, RL=32Ω	100	110	120	4D
Signal-to-Noise	SNR	A-Weig			95	100	-	dB
Residual noise	Vno	A-weigh			-	35	50	μV
Output offset	Voff	+OUT ~			2	10	30	mV
Channel separation	CS	BTL		F=1KHz	80	90	100	dB
		SE			80	85	95	
Power Signal-to-Noise repel rate	PSRR	BTL		F=100Hz	60	70	80	dB
		SE			40	45	50	
Temperature protect	TH		at close	-	-	130	140	$^{\circ}\mathbb{C}$
Tomporatoro protoot		Back to		-	85	100	-	
Shutdown voltage	VSD	Shutdov		VDD=3~5V	0.45	0.6	-	VDD
Chataomi voltage	V 0 D	Shutdov	wn OFF	Shutdown pin	-	0.15	0.2	V 00
SE/BTL voltage	VSB	SE		VDD=3~5V	0.75	0.8	-	VDD
OL/D12 Voltage	VOD	BTL		VDD-0 0V	-	0.2	0.3	V D D

PACKAGE THERMAL CHARACTERISTICS

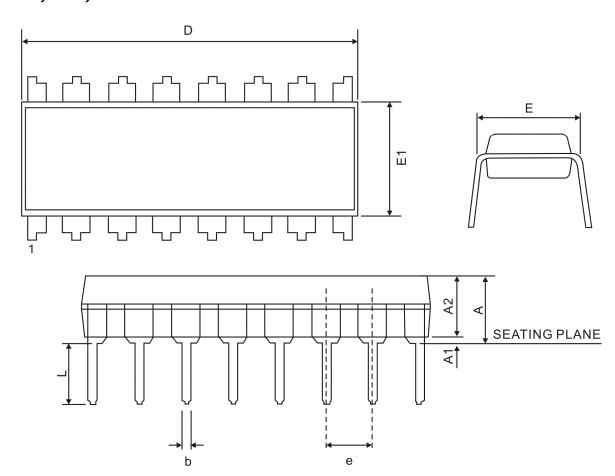
PACKAGE TYPE: SOP16L, 300MIL(PT2303-S)

Parameter	Symbol	Condition	Value	Unit
From chip conjunction dissipation to external environment	θ_{JA}	Ta=25°ℂ	88.88	°C \M
From chip conjunction dissipation to package surface	$\theta_{ m JC}$	1a-25 (26	°C\M

PACKAGE TYPE: TSSOP20L, 173MIL(PT2303-TX)

Parameter	Symbol	Condition	Value	Unit
From chip conjunction dissipation to external environment	θ_{JA}	Ta=25°ℂ	73	°C/W
From chip conjunction dissipation to package surface	θ_{JC}	1a-25 (50.7	°C/W

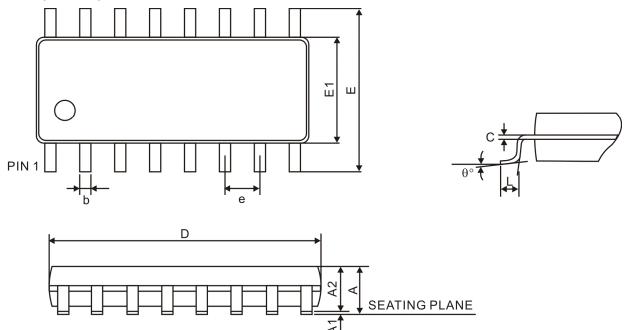
PACKAGE TYPE: HTSSOP20L, 173MIL(PT2303-HT)


Parameter	Symbol	Condition	Value	Unit
From chip conjunction dissipation to external environment	θ_{JA}	Ta=25°ℂ	90	°C/W
From chip conjunction dissipation to package surface	θ_{JC}	1a-25 (20	°C/W

V1.3 7 December 2010

PACKAGE INFORMATION

16 PINS, DIP, 300MIL

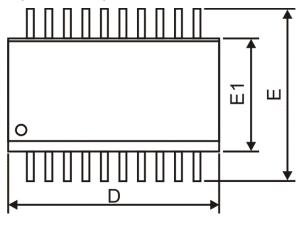

Symbol	Min.	Тур.	Max.		
Α	-	-	5.33		
A1	0.38	-	-		
A2	2.92	3.30	4.95		
b	0.36	-	0.56		
С	0.20	-	0.36		
е		2.54 BSC.			
D	18.67	19.17	19.69		
E	7.62 BSC.				
E1	7.63	7.87	8.26		
L	2.92	-	3.81		

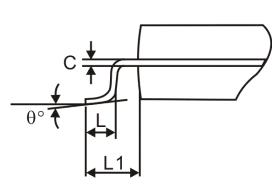
Notes

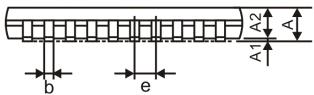
1. Refer to JEDEC MS-001 BB

2. Unit: mm

16 PINS, SOP, 300MIL

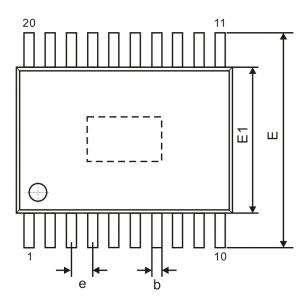

Symbol	Min.	Тур.	Max.
Α	-	-	2.65
A1	0.10	-	0.30
A2	2.05	-	-
b	0.31	-	0.51
С	0.20	-	0.33
е	1.27 BSC.		
D	10.30		
E	10.30 BSC.		
E1	7.5 BSC.		
L	0.40	-	1.27
θ	0°	-	8°

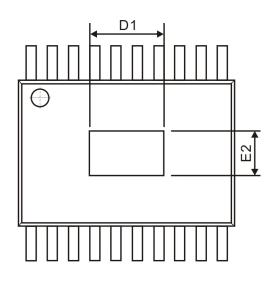

Notes:

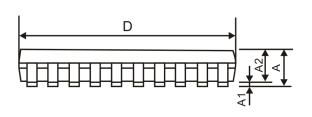

1. Refer to JEDEC MS-013 AA

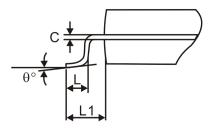
2. Unit: mm

20PINS, TSSOP, 173MIL




Symbol	Min.	Тур.	Max.
Α	-	-	1.20
A1	0.05	-	0.15
A2	0.80	1.00	1.05
b	0.19	-	0.30
С	0.09	-	0.20
D	6.40	6.50	6.60
е	0.65 BSC.		
E	6.40 BSC.		
E1	4.30	4.40	4.50
L	0.45	0.60	0.75
L1	1.0 REF.		
θ	0°	-	8°


Notes: 1. Refer to JEDEC MO-153 AC


2. Unit: mm

20PINS, HTSSOP, 173MIL

Symbol	Min.	Тур.	Max.
Α	-	-	1.20
A1	0.05	-	0.15
A2	0.80	1.00	1.05
b	0.19	-	0.30
С	0.09	-	0.20
D	6.40	6.50	6.60
D1	2.20	-	-
е	0.65 BSC.		
E	6.40 BSC.		
E1	4.30	4.40	4.50
E2	1.50	-	-
L	0.45	0.60	0.75
L1	1.0 REF.		
θ	0°	=	8°

Notes: 1. Refer to JEDEC MO-153 ACT 2. Unit: mm

Option 1

Symbol	Min.	Тур.	Max.
D1	3.79	3.99	4.19
E2	2.60	2.80	3.00

IMPORTANT NOTICE

Princeton Technology Corporation (PTC) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time. PTC cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a PTC product. No circuit patent licenses are implied.

Princeton Technology Corp. 2F, 233-1, Baociao Road, Sindian, Taipei 23145, Taiwan Tel: 886-2-66296288

Fax: 886-2-29174598 http://www.princeton.com.tw