
- Compatible With IEEE Std 1194.1-1991 (BTL)
- TTL A Port, Backplane Transceiver Logic (BTL) B Port
- Open-Collector B-Port Outputs Sink 100 mA
- Isolated Logic-Ground and Bus-Ground Pins Reduce Noise
- High-Impedance State During Power Up and Power Down

- BIAS V_{CC} Pin Minimizes Signal Distortion During Live Insertion or Withdrawal
- B-Port Biasing Network Preconditions the Connector and PC Trace to the BTL High-Level Voltage
- Package Options Include Plastic Quad Flat (RC) Package and Ceramic Flat (WD) Package

NC – No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN54FB2040, SN74FB2040 8-BIT TTL/BTL TRANSCEIVERS

SCBS173G - NOVEMBER 1991 - REVISED JUNE 1997

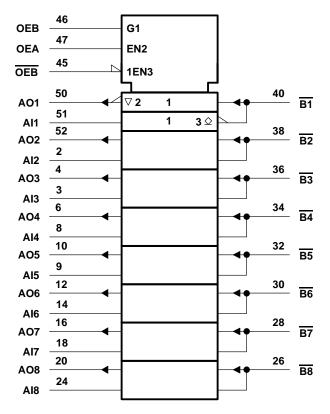
description

The 'FB2040 are 8-bit transceivers designed to translate signals between TTL and backplane transceiver logic (BTL) environments.

The \overline{B} port operates at BTL-signal levels. The open-collector \overline{B} ports are specified to sink 100 mA. Two output enables, OEB and \overline{OEB} , are provided for the \overline{B} outputs. When OEB is high and \overline{OEB} is low, the \overline{B} port is active and reflects the inverse of the data present at the A-input pins. When OEB is low, \overline{OEB} is high, or V_{CC} is less than 2.1 V, the \overline{B} port is turned off.

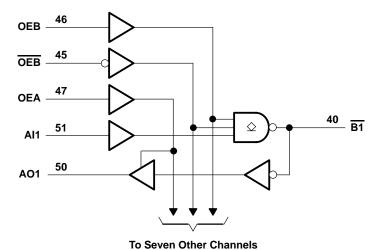
The A port operates at TTL-signal levels and has separate input and output pins. The A outputs reflect the inverse of the data at the \overline{B} port when the A-port output enable, OEA, is high. When OEA is low or when V_{CC} is less than 2.1 V, the A outputs are in the high-impedance state.

Pins are allocated for the four-wire IEEE Std 1149.1 (JTAG) test bus. Currently, TMS and TCK are not connected and TDI is shorted to TDO.


BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected.

The SN54FB2040 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74FB2040 is characterized for operation from 0°C to 70°C.

FUNCTION TABLE


	INPUTS		FUNCTION						
OEB	OEB	OEA	FUNCTION						
L	Χ	L	Isolation						
Х	Н	L	isolation						
L	Х	Н	-						
Х	Н	Н	B data to AO bus						
Н	L	L	Al data to B bus						
Н	L	Н	Al data to B bus, B data to AO bus						

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the RC package.

functional block diagram

Pin numbers shown are for the RC package.

SN54FB2040, SN74FB2040 8-BIT TTL/BTL TRANSCEIVERS

SCBS173G - NOVEMBER 1991 - REVISED JUNE 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	-0.5 V to 7 V
Input voltage range, V _I : Except B port	\dots -1.2 V to 7 V
B port	1.2 V to 3.5 V
Voltage range applied to any \overline{B} output in the disabled or power-off state, V_{O}	
Voltage range applied to any output in the high state, V _O : A port	\dots -0.5 V to V _{CC}
Input clamp current, I _{IK} : Except B port	–40 mA
B port	–18 mA
Current applied to any single output in the low state, IO: A port	48 mA
	200 mA
Package thermal impedance, θ _{JA} (see Note 1): RC package	79°C/W
Storage temperature range, T _{stg}	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 2)

			SN	SN54FB2040			SN74FB2040		
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC} , BIAS V _{CC} , BG V _{CC}	Supply voltage		4.75	5	5.25	4.5	5	5.5	V
V	High-level input voltage	B port*	1.62		2.3	1.62		2.3	V
VIH	High-level input voltage	Except B port	2			2			
V.,	Low lovel input voltage	B port*	0.75		1.47	0.75		1.47	V
V _{IL}	Low-level input voltage	Except B port			0.8			0.8	
I _{IK}	Input clamp current			-18			-18	mA	
loh	High-level output current	AO port			-3			-3	mA
loL	Low lovel output ourrent	AO port			-24			24	A
	Low-level output current	B port			100			100	mA
T _A	Operating free-air temperature	-55		125	0		70	°C	

^{*} On products compliant to MIL-PRF-38535, this parameter is warranted but not production tested.

NOTE 2: Unused pins (input or I/O) must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST C	SN	154FB20	40	SN	UNIT				
	PARAMETER	1251 C	ONDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNII	
\/¢	B port	$V_{CC} = MIN,$ $I_I = -18 \text{ mA}$				-1.2			-1.2	V	
VIK	Except B port	$V_{CC} = MIN,$	$I_{\parallel} = -40 \text{ mA}$			-1.2			-0.5	٧	
Voн	AO port	V _{CC} = MIN	$I_{OH} = -1 \text{ mA}$		3.2					V	
VOH	AO poit	VCC = 1/111/4	$I_{OH} = -3 \text{ mA}$	2.5	3.3		2.5	3.3		V	
	AO port	V _{CC} = MIN	$I_{OL} = 20 \text{ mA}$		0.09						
V _{OL}	AO poit	VCC = 1/111/4	$I_{OL} = 24 \text{ mA}$		0.35	0.5		0.35	0.5	V	
I VOL	B port	V _{CC} = MIN	$I_{OL} = 80 \text{ mA}$	0.75		1.1	0.75		1.1	v	
	Броп	VCC = WIIIV	I _{OL} = 100 mA			1.2			1.15		
IĮ	Except B port	$V_{CC} = 5.5 \text{ V},$	V _I = 5.5 V			50			50	μΑ	
l _{IH} ‡	Except B port	$V_{CC} = 5.5 \text{ V},$	V _I = 2.7 V			50			50	μΑ	
, +	Except B port	$V_{CC} = 5.5 \text{ V},$	V _I = 0.5 V			– 50			-50	^	
I _{IL} ‡	B port	$V_{CC} = 5.5 \text{ V},$	V _I = 0.75 V			-100			-100	μΑ	
ІОН	B port	$V_{CC} = 0 \text{ to } 5.5 \text{ V},$	V _O = 2.1 V			100			100	μΑ	
lozh	AO port	V _{CC} = 5.5 V,	V _O = 2.7 V			50			50	μΑ	
lozL	AO port	V _{CC} = 5.5 V,	V _O = 0.5 V			-50			-50	μΑ	
IOZPU§	A port	$V_{CC} = 0 \text{ to } 2.1 \text{ V},$	V _O = 0.5 V to 2.7 V			50			50	μΑ	
IOZPD [§]	A port	$V_{CC} = 2.1 \text{ V to } 0,$	$V_0 = 0.5 \text{ V to } 2.7 \text{ V}$			-50			-50	μΑ	
los¶	AO port	$V_{CC} = 5.5 \text{ V},$	V _O = 0	-30		-170	-30		-180	mA	
loo	Al port to B port	V _{CC} = 5.5 V,	IO = 0		25	40		40		mΑ	
ICC	B port to AO port	VCC = 5.5 V,	10 = 0		60	70		70		ШХ	
Ci	Al port*	VI - Voc or GND				9.9		3.5		s E	
G	Control inputs*	VI = VCC or GND				9.9		3		pF	
Co	AO port*	$V_O = V_{CC}$ or GND)			14.7		6		pF	
C. 8	B port per	$V_{CC} = 0 \text{ to } 4.5 \text{ V}$			8#			5			
C _{io} §	IEEE Std 1194.1-1991*	$V_{CC} = 4.5 \text{ V to } 5.5$			9#			5	pF		

^{*} On products compliant to MIL-PRF-38535, this parameter is warranted but not production tested.

live-insertion specifications over recommended operating free-air temperature range

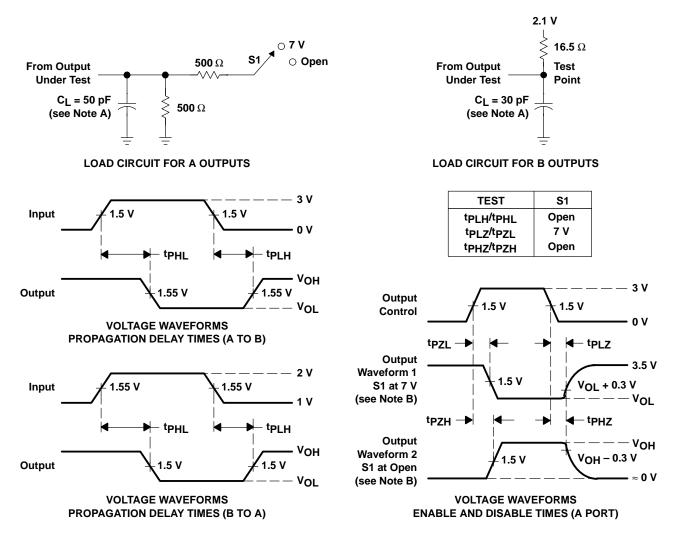
PARAMETER			SN54F	B2040	SN74FB2040		UNIT	
			MIN	MAX	MIN	MAX	0.411	
ICC (BIAS VCC)		$V_{CC} = 0 \text{ to } 4.5 \text{ V}$	V= 0 to 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		450		450	
ICC (PI)	42 AGG)	V _{CC} = 4.5 to 5.5 V	$V_B = 0 \text{ to } 2 \text{ V}, V_I \text{ (BIAS V}_{CC}) = 4.5 \text{ V to } 5.5 \text{ V}$		10		10	μΑ
٧o	B port	$V_{CC} = 0$,	V_{I} (BIAS V_{CC}) = 5 V	1.62	2.1	1.62	2.1	V
		$V_{CC} = 0$,	$V_B = 1 \text{ V}, \qquad V_I \text{ (BIAS V}_{CC}) = 4.5 \text{ V to } 5.5 \text{ V}$	-30		-1		
Ю	B port	$V_{CC} = 0 \text{ to } 5.5 \text{ V},$	OEB = 0 to 0.8 V		100		100	μΑ
		$V_{CC} = 0 \text{ to } 2.2 \text{ V},$	OEB = 0 to 5 V		100		100	

 $^{^{\}dagger}$ All typical values are at VCC = 5 V, TA = 25°C. ‡ For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

[§] This parameter is warranted but not production tested.

[¶] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

[#] Parameter does not meet IEEE Std 1194.1-1991.


SN54FB2040, SN74FB2040 8-BIT TTL/BTL TRANSCEIVERS

SCBS173G - NOVEMBER 1991 - REVISED JUNE 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

					SN	54FB20	40							
PARAM	ETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C		MIN	MAX	V _{CC} = 5 V, T _A = 25°C			MIN	MAX	UNIT	
				MIN	TYP	MAX			MIN	TYP	MAX			
^t PLH		Al	B	2.5	4.5	6	0.5	8.5	3.2	4.5	6	2.4	6.5	nc
^t PHL		ΚI	В	1.8	4.2	5.8	0.4	8.5	2.8	4.2	5.6	2.7	5.8	ns
^t PLH		IB	AO	1.5	3.8	5.7	0.4	8	2.3	3.8	5.7	1.9	6.2	nc
tPHL		В	AO	2.3	4.2	5.9	0.8	18	2.3	4.2	5.9	2	8.2	ns
tPLH		OEB	B	3.3	5.1	6.7	0.5	9.9	3.7	5.1	6.7	3	7	20
tPHL		OEB	В	3.1	4.6	6.2	0.4	9.5	3.1	4.6	5.9	3	6.1	ns
^t PLH			B	3.2	5.2	6.8	1.3	9.5	3.6	5.2	6.8	3.3	7	ns
^t PHL		OEB		2.9	4.4	6	0.2	9.8	2.9	4.4	5.9	2.6	6.1	
^t PZH		OEA	AO	1.7	4	5.5	1.2	8	2.5	4	5.5	2.1	5.8	ns
tPZL		OLA	AO	1.5	3.6	5.1	0.8	7.5	2.1	3.6	4.8	2	5	110
^t PHZ		OEA	AO	1.8	4.1	5.9	1	8.2	2.3	4.1	5.9	1.9	6.5	ns
tPLZ		OEA	AO	1	3.1	4.7	0.4	7.2	1.6	3.1	4.5	1.4	4.7	110
tsk(p)		w for any single channel			0.5					0.5				ns
t _{sk(o)}		w between <u>drivers</u> in the same kage, AI to B or B to AO			0.4					0.4				ns
t _r	Rise t	se time, 1.3 V to 1.8 V, B port		0.2	2.8	3.8	0.2	4.5	2	2.8	3.8	1.7		ns
t _f	Fall tir	Fall time, 1.8 V to 1.3 V, B port		1	1.9	3	0.9	4.0	1	1.9	3	1	4.2	ns
B-port in	B-port input pulse rejection											1	3.4	ns

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: TTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , $t_\Gamma \leq$ 2.5 ns, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated