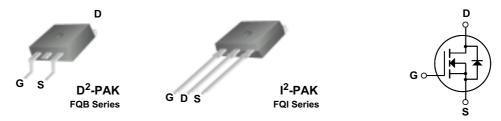


April 2000

FQB19N20 / FQI19N20

200V N-Channel MOSFET


General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters, switch mode power supply, DC-AC converters for uninterrupted power supply, motor control.

Features

- 19.4A, 200V, $R_{DS(on)}$ = 0.15 Ω @V_{GS} = 10 V Low gate charge (typical 31 nC)
- Low Crss (typical 30 pF)
- · Fast switching
- · 100% avalanche tested
- · Improved dv/dt capability

Absolute Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter		FQB19N20 / FQI19N20	Units
V _{DSS}	Drain-Source Voltage		200	V
I _D	Drain Current - Continuous (T _C = 25°C)		19.4	Α
	- Continuous (T _C = 100°C)		12.3	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	78	Α
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	250	mJ
I _{AR}	Avalanche Current	(Note 1)	19.4	Α
E _{AR}	Repetitive Avalanche Energy	(Note 1)	14	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	5.5	V/ns
P _D	Power Dissipation (T _A = 25°C) *		3.13	W
	Power Dissipation (T _C = 25°C)		140	W
	- Derate above 25°C		1.12	W/°C
T_J, T_{STG}	Operating and Storage Temperature Range		-55 to +150	°C
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		0.89	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

^{*} When mounted on the minimum pad size recommended (PCB Mount)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	200			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.18		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 200 V, V _{GS} = 0 V			1	μΑ
		V _{DS} = 160 V, T _C = 125°C			10	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
On Cha	aracteristics		•			
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 9.7 A		0.12	0.15	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 9.7 A (Note 4)		14.5		S
	Input Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$		1220	1600	pF
	Output Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz		1220 220	1600 290	pF pF
C _{oss}	' '	50 . 00 .				
C _{oss}	Output Capacitance	50 . 00 .		220	290	pF
C _{oss} C _{rss} Switchi	Output Capacitance Reverse Transfer Capacitance	f = 1.0 MHz		220	290	pF
C_{oss} C_{rss} Switchit $t_{d(on)}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics	50 . 00 .		220 30	290 40	pF pF
$egin{array}{c} C_{oss} \ C_{rss} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time	f = 1.0 MHz $V_{DD} = 100 \text{ V}, I_{D} = 19.4 \text{ A},$ $R_{G} = 25 \Omega$		220 30 20	290 40 50	pF pF
$egin{array}{ll} C_{oss} & \\ C_{rss} & \\ \hline & Switch \\ \hline & t_{d(on)} & \\ t_r & \\ \hline & t_{d(off)} & \\ \hline & t_f & \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time	f = 1.0 MHz V _{DD} = 100 V, I _D = 19.4 A,		220 30 20 190	290 40 50 390	pF pF ns
$egin{array}{ll} C_{oss} & \\ C_{rss} & \\ \hline & Switch \\ \hline & t_{d(on)} & \\ t_r & \\ \hline & t_{d(off)} & \\ \hline & t_f & \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	f = 1.0 MHz $V_{DD} = 100 \text{ V}, I_{D} = 19.4 \text{ A},$ $R_{G} = 25 \Omega$	 	220 30 20 190 55	290 40 50 390 120	pF pF ns ns
$\begin{aligned} & C_{oss} \\ & C_{rss} \end{aligned}$ Switching $& t_{d(on)} \\ & t_r \\ & t_{d(off)} \\ & t_f \\ & C_g \end{aligned}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	f = 1.0 MHz V_{DD} = 100 V, I_{D} = 19.4 A, R_{G} = 25 Ω (Note 4, 5)	 	220 30 20 190 55 80	290 40 50 390 120 170	pF pF ns ns
$\begin{aligned} & C_{oss} \\ & C_{rss} \end{aligned}$ Switching $& t_{d(on)} \\ & t_r \\ & t_{d(off)} \\ & t_f \\ & C_g \end{aligned}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 100 \text{ V, } I_{D} = 19.4 \text{ A,}$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 \text{ V, } I_{D} = 19.4 \text{ A,}$		220 30 20 190 55 80 31	290 40 50 390 120 170 40	pF pF ns ns ns ns nc
$\begin{array}{c} C_{oss} \\ C_{rss} \\ \hline \\ \textbf{Switch} \\ \hline \\ \textbf{t}_{d(on)} \\ \textbf{t}_{r} \\ \textbf{t}_{d(off)} \\ \textbf{t}_{f} \\ \hline \\ \textbf{Q}_{g} \\ \hline \\ \textbf{Q}_{gs} \\ \hline \\ \textbf{Q}_{gd} \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 100 \text{ V}, I_{D} = 19.4 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 \text{ V}, I_{D} = 19.4 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5)	 	220 30 190 55 80 31 8.6	290 40 50 390 120 170 40	pF pF ns ns ns ns nc nC
C_{rss} Switchi $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd}	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 100 \text{ V}, \text{ I}_{D} = 19.4 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 \text{ V}, \text{ I}_{D} = 19.4 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5)	 	220 30 190 55 80 31 8.6	290 40 50 390 120 170 40	pF pF ns ns ns ns nc nC
$\begin{array}{c} C_{oss} \\ C_{rss} \\ \hline \\ \textbf{Switchi} \\ \hline \\ \textbf{t}_{d(on)} \\ \textbf{t}_{r} \\ \hline \\ \textbf{t}_{d(off)} \\ \textbf{t}_{f} \\ \hline \\ \textbf{Q}_{g} \\ \hline \\ \textbf{Q}_{gs} \\ \hline \\ \textbf{Q}_{gd} \\ \hline \\ \textbf{Drain-S} \\ \hline \\ \textbf{I}_{S} \\ \end{array}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 100 \text{ V}, \text{ I}_{D} = 19.4 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 \text{ V}, \text{ I}_{D} = 19.4 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) and Maximum Ratings are Forward Current	 	220 30 20 190 55 80 31 8.6 13.5	290 40 50 390 120 170 40 	pF pF ns ns ns nc nC
$\begin{array}{c} C_{oss} \\ C_{rss} \\ \\ \hline \\ Switchi \\ t_{d(on)} \\ t_{r} \\ t_{d(off)} \\ t_{f} \\ Q_{g} \\ Q_{gs} \\ Q_{gd} \\ \\ \hline \\ Drain-S \\ I_{SM} \\ \end{array}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode	$f = 1.0 \text{ MHz}$ $V_{DD} = 100 \text{ V}, \text{ I}_{D} = 19.4 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 \text{ V}, \text{ I}_{D} = 19.4 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) and Maximum Ratings are Forward Current	 	220 30 190 55 80 31 8.6 13.5	290 40 50 390 120 170 40 	pF pF ns ns ns nc nC
$egin{array}{ll} C_{oss} & C_{rss} & \\ \hline C_{rss} & \\ \hline Switchi & \\ t_{d(on)} & \\ t_{r} & \\ t_{d(off)} & \\ t_{f} & \\ Q_{g} & \\ Q_{gs} & \\ Q_{gd} & \\ \hline Drain-S & \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode Fall Maximum Pulsed Drain-Source Diode Fall Characteristics and	$f = 1.0 \text{ MHz}$ $V_{DD} = 100 \text{ V}, \text{ I}_{D} = 19.4 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 \text{ V}, \text{ I}_{D} = 19.4 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) $\text{Ad Maximum Ratings}$ $\text{ode Forward Current}$ Forward Current		220 30 190 55 80 31 8.6 13.5	290 40 50 390 120 170 40 	pF pF ns ns ns nc nC

- **Notes:**1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 1.0mH, I_{AS} = 19.4A, V_{DD} = 50V, R_G = 25 Ω, Starting T_J = 25°C 3. I_{SD} \leq 19.4A, di/dt \leq 300A/μs, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width \leq 300μs, Duty cycle \leq 2% 5. Essentially independent of operating temperature

©2000 Fairchild Semiconductor International

Typical Characteristics

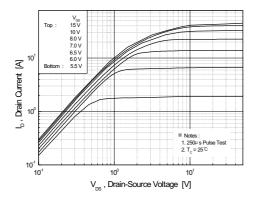


Figure 1. On-Region Characteristics

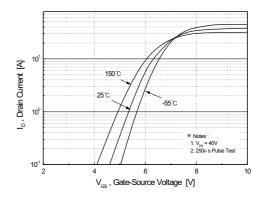


Figure 2. Transfer Characteristics

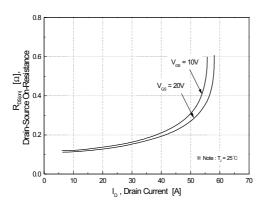


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

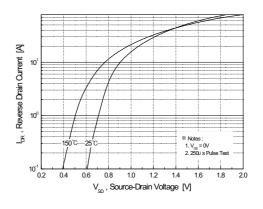


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

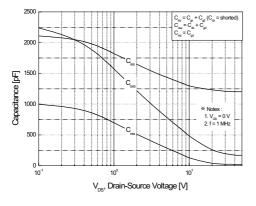


Figure 5. Capacitance Characteristics

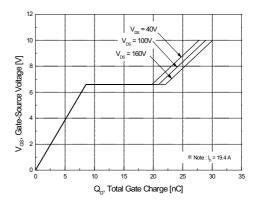
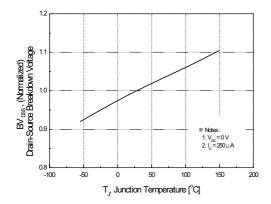



Figure 6. Gate Charge Characteristics

©2000 Fairchild Semiconductor International Rev. A, April 2000

Typical Characteristics (Continued)

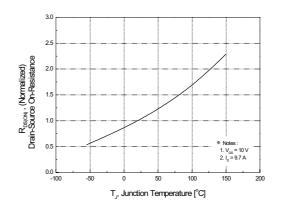
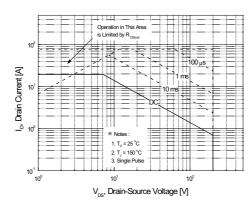



Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On-Resistance Variation vs. Temperature

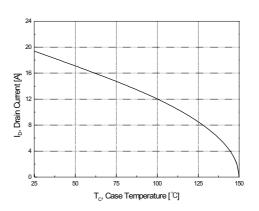
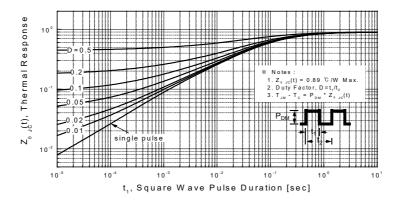
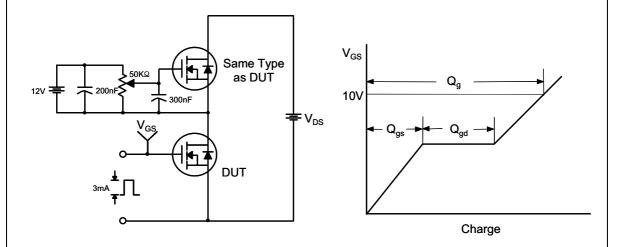
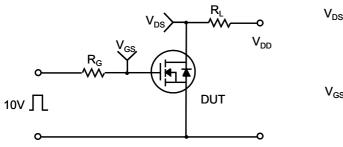
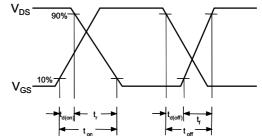


Figure 9. Maximum Safe Operating Area

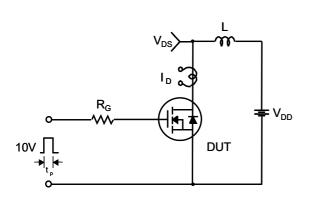
Figure 10. Maximum Drain Current vs. Case Temperature

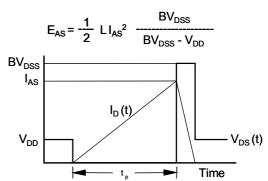



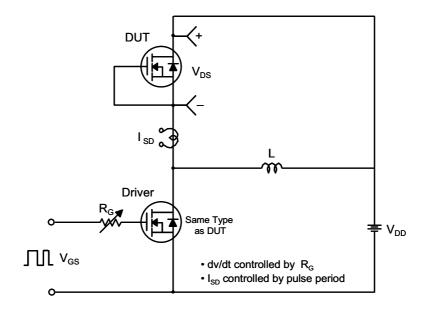

Figure 11. Transient Thermal Response Curve

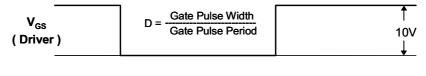

©2000 Fairchild Semiconductor International Rev. A, April 2000

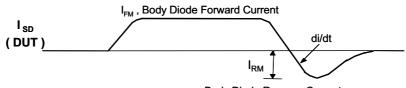
Gate Charge Test Circuit & Waveform

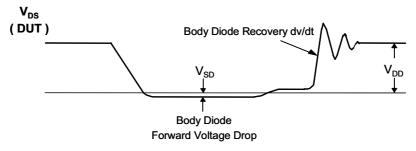


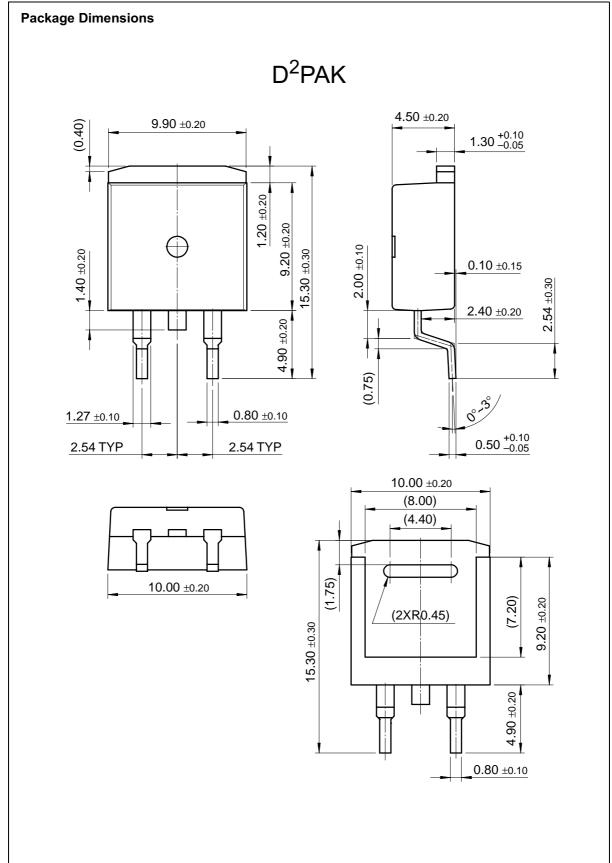

Resistive Switching Test Circuit & Waveforms



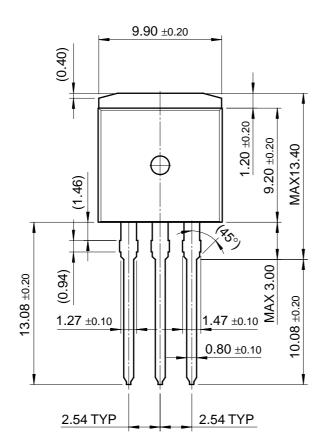

Unclamped Inductive Switching Test Circuit & Waveforms

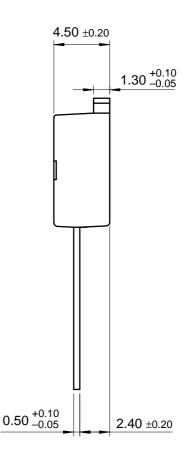


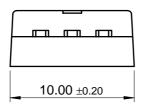

Peak Diode Recovery dv/dt Test Circuit & Waveforms



Body Diode Reverse Current




©2000 Fairchild Semiconductor International Rev. A, April 2000



I²PAK

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FACT™ QFET™ FACT Quiet Series™ QS™

FAST® Quiet Series™ FASTr™ SuperSOT™-3 GTO™ SuperSOT™-6

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2000 Fairchild Semiconductor International Rev. A, January 2000