

74ALS563A/74ALS564A Latch flip/flop

74ALS563A/74ALS564A

74ALS563A Octal transparent latch, inverting (3-State)
 74ALS564A Octal D flip-flop, inverting (3-State)

FEATURES

- 74ALS563A is broadside pinout and inverting version of 74ALS373
- 74ALS564A is broadside pinout and inverting version of 74ALS374
- Inputs and outputs on opposite side of package allow easy interface to microprocessors
- Useful as an input or output port for microprocessors
- 3-State outputs for bus interfacing
- Common output enable
- 74ALS573A and 74ALS574A are non-inverting version of 74ALS563B and 74ALS564A respectively

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 A L S 563 A$	6.0 ns	12 mA
$74 A L S 564 \mathrm{~A}$	6.0 ns	15 mA

ORDERING INFORMATION

DESCRIPTION	$\begin{array}{c}\text { ORDER CODE }\end{array}$	$\begin{array}{c}\text { COMMERCIAL RANGE } \\ \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{amb}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\end{array}$
	DRAWING	

DESCRIPTION

The 74ALS563A is an octal transparent latch coupled to eight 3 -State output devices. The two sections of the device are controlled independently by enable (E) and output enable (OE) control gates.
The 74ALS563A is a complementary version of the 74ALS373 and has a broadside pinout configuration to facilitate PC board layout and allow easy interface with microprocessors.

The data on the D inputs is transferred to the latch outputs when the enable (E) input is High. The latch remains transparent to the data input while E is High, and stores the inverted data that is present one setup time before the High-to-Low enable transition.

The 74ALS564A is a complementary version of the 74ALS373 and has a broadside pinout configuration to facilitate PC board layout and allow easy interface with microprocessors.

It is an 8-bit edge triggered register coupled to eight 3-State output buffers. The two sections of the device are controlled independently by clock (CP) and output enable (OE) control gates.

The register is fully edge triggered. The state of the D input, one setup time before the Low-to-High clock transition is transferred to the corresponding flip-flop's Q output.

The active-Low output enable (OE) controls all eight 3-State buffers independent of the latch operation. When OE is Low, latched or transparent data appears at the output.

When OE is High, the outputs are in high impedance "off" state, which means they will neither drive nor load the bus.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74ALS (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
D0 - D7	Data inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 0.2 \mathrm{~mA}$
$\mathrm{E}(74 \mathrm{ALS563A})$	Enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.1 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output enable input (active-Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.1 \mathrm{~mA}$
CP (74ALS564A)	Clock pulse input (active rising edge)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 0.2 \mathrm{~mA}$
$\overline{\mathrm{Q} 0-\overline{\mathrm{Q}} 7}$	Data outputs	$130 / 240$	$2.6 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE: One (1.0) ALS unit load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.1 mA in the Low state.

PIN CONFIGURATION - 74ALS563A

LOGIC SYMBOL - 74ALS563A

IEC/IEEE SYMBOL - 74ALS563A

PIN CONFIGURATION - 74ALS564A

LOGIC SYMBOL - 74ALS564A

IEC/IEEE SYMBOL - 74ALS564A

LOGIC DIAGRAM - 74ALS563A

FUNCTION TABLE - 74ALS563A

INPUTS			OUTPUTS REGISTER	INTERNAL	OPERATING MODE
$\overline{\text { OE }}$	E	Dn		$\overline{\mathbf{Q}} 0$ - $\overline{\mathbf{Q}} \mathbf{}$	
L	H	L	L	H	Enable and read register
L	H	H	H	L	
L	\downarrow	1	L	H	Latch and read register
L	\downarrow	h	H	L	
L	L	X	NC	NC	Hold
H	L	X	NC	Z	Disable outputs
H	H	Dn	Dn	Z	

$\mathrm{H}=$ High voltage level
$\mathrm{h}=$ High state must be present one setup time before the High-to-Low enable transition
L = Low voltage level
I = Low state must be present one setup time before the High-to-Low enable transition
NC= No change
X = Don't care
Z = High impedance "off" state
$\downarrow=$ High-to-Low enable transition

FUNCTION TABLE - 74ALS564A

INPUTS			OUTPUTS REGISTER	INTERNAL	OPERATING MODE
OE	CP	Dn		$\overline{\mathbf{Q}} 0$ - $\overline{\mathbf{Q}} \mathbf{}$	
L	\uparrow	1	L	H	Load and read register
L	\uparrow	h	H	L	
L	\uparrow	X	NC	NC	Hold
H	\uparrow	X	NC	Z	Disable outputs
H	\uparrow	Dn	Dn	Z	

$\mathrm{H}=$ High voltage level
$\mathrm{h}=$ High state must be present one setup time before the Low-to-High clock transition
$\mathrm{L}=$ Low voltage level
I = Low state must be present one setup time before the Low-to-High clock transition
$\mathrm{NC}=$ No change
$X=$ Don't care
$Z=$ High impedance "off" state
$\uparrow=$ Low-to-High clock transition
$\uparrow=$ Not Low-to-High clock transition

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free-air temperature range.)

| SYMBOL | PARAMETER | RATING |
| :---: | :--- | :---: | :---: |
| V_{CC} | Supply voltage | -0.5 to +7.0 |
| $\mathrm{~V}_{\text {IN }}$ | Input voltage | -0.5 to +7.0 |
| I_{IN} | Input current | -30 to +5 |
| $\mathrm{~V}_{\text {OUT }}$ | Voltage applied to output in High output state | V |
| $\mathrm{I}_{\text {OUT }}$ | Current applied to output in Low output state | -0.5 to V_{CC} |
| $\mathrm{T}_{\mathrm{amb}}$ | Operating free-air temperature range | mA |
| $\mathrm{T}_{\text {Stg }}$ | Storage temperature range | 48 |

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS		UNIT	
		MIN	NOM		
V_{CC}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-2.6	mA
I_{OL}	Low-level output current			24	mA
$\mathrm{~T}_{\text {amb }}$	Operating free-air temperature range	0		+70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
				MIN	TYP2	MAX					
V_{OH}	High-level output voltage					$\begin{aligned} & V_{C C}= \pm 10 \%, V_{I L}=M A X, \\ & V_{I H}=\operatorname{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2$			V
				$\mathrm{IOH}_{\text {= MAX }}$	2.4		3.2		V		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.25	0.40	V		
				$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.35	0.50	V			
V_{IK}	Input clamp voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.5	V	
I	Input current at maximum input voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=7.0 \mathrm{~V}$				0.1	mA		
$\mathrm{IIH}^{\text {H }}$	High-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
IIL	Low-level input current	74ALS563A		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.1	mA		
		74ALS564A						-0.2	mA		
l OZH	Off-state output current, High-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
lozl	Off-state output current, Low-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
10	Output current ${ }^{3}$			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$		-30		-112	mA		
Icc	Supply current (total)	74ALS563A	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=$ MAX			7	12	mA		
			$\mathrm{I}_{\text {CCL }}$				13	21	mA		
			ICCz				15	24	mA		
		74ALS564A	$\mathrm{I}_{\text {CCH }}$	$V_{C C}=$ MAX			11	18	mA		
			$\mathrm{I}_{\text {CCL }}$				17	27	mA		
			$\mathrm{I}_{\text {CCZ }}$				18	28	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, los.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITION			UNIT	
			$\begin{aligned} & \mathrm{T}_{\mathrm{amb}} \\ & \mathrm{~V}_{\mathrm{CC}} \\ & \mathrm{C}_{\mathrm{L}}=5 \end{aligned}$	$\begin{aligned} & \hline+70^{\circ} \mathrm{C} \\ & 10 \% \\ & =500 \Omega \end{aligned}$			
			MIN	MAX			
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHLL }} \end{aligned}$	Propagation delay Dn to $\overline{\text { Q }}$	74ALS563A		Waveform 3	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay E to Qn			Waveform 2	$\begin{aligned} & \hline 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	Output enable time to High or Low level		Waveform 6 Waveform 7	$\begin{aligned} & 1.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 9.0 \\ 11.0 \end{gathered}$	ns	
$\begin{aligned} & \text { tpHz } \\ & \text { tpLZ } \end{aligned}$	Output disable time from High or Low level		Waveform 6 Waveform 7	$\begin{aligned} & \hline 1.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	ns	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	74ALS564A	Waveform 1	45		MHz	
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation delay CP to Qn		Waveform 1	$\begin{aligned} & \hline 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 12.0 \\ & 12.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output enable time to High or Low level		Waveform 6 Waveform 7	$\begin{aligned} & 1.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	ns	
$\begin{aligned} & \text { tpHz } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output disable time from High or Low level		Waveform 6 Waveform 7	$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	ns	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER		TEST CONDITION			UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$				
			MIN	MAX			
$\begin{aligned} & \mathrm{t}_{\mathrm{su}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{su}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\text { Dn to } \mathrm{E}$	74ALS563A		Waveform 4	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low Dn to E			Waveform 4	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	E Pulse width, High		Waveform 1	10.0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{su}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{su}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low Dn to CP	74ALS564A	Waveform 5	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		ns	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low Dn to CP		Waveform 5	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP Pulse width, High or Low		Waveform 5	$\begin{gathered} 7.0 \\ 11.0 \end{gathered}$		ns	

AC WAVEFORMS

For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 1. Propagation Delay for Clock Input to Output, Clock Pulse Widths, and Maximum Clock Frequency

SF00260
Waveform 3. Propagation Delay for Data to Output

Waveform 4. Data Setup Time and Hold Times

Waveform 6. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 2. Propagation Delay for Enable to Output and Enable Pulse Width

Waveform 5. Data Setup Time and Hold Times

Waveform 7. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORMS

Latch flip-flop

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\text { max. }}{A}$	A min.	A_{2} max.	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	\mathbf{M}_{H}	w	$\mathbf{z a x}^{(1)}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 26.92 \\ & 26.54 \end{aligned}$	$\begin{aligned} & 6.40 \\ & 6.22 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	2.0
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 1.060 \\ & 1.045 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT146-1			SC603	-	$\begin{aligned} & 92-11-17 \\ & 95-05-24 \end{aligned}$

Latch flip-flop

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max }{\mathrm{A}}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	0.9 0.4	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.49 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \\ & \hline \end{aligned}$	0.050	$\begin{aligned} & 0.42 \\ & 0.39 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT163-1	075E04	MS-013AC		-	$\begin{aligned} & -92-11-17 \\ & 95-01-24 \end{aligned}$

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

PHILIPS

