

Video Signal 3-Channel 8-Bit D/A Converter

Preliminary

Overview

The LC89080 and LC89080Q are high-speed currentoutput D/A converters. They feature 8 -bit resolution, provide 3 channels on a single chip, and can be used in demodulators for high-speed signals such as video signals.

Features

- Resolution: 8 bits
- D/A converters: Three current-output D/A converter channels on a single chip
- Maximum conversion speed: 30 MSPS
- Error: ± 1.0 LSB (maximum)
- Power supply: +5 V single-voltage power supply
- Power dissipation: 330 mW
- Inputs: TTL compatible

Package Dimensions

unit: mm
3025B-DIP42S

SANYO: DIP42S
unit mam
3052A-QFP48A

SANYO: QFP48A

Specifications
Absolute Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\text {DD }}$ max		- -0.3 to +7.0	V
Input voltage	$\mathrm{V}_{\text {IN }}$		-0.3 to $\mathrm{V}_{\mathrm{DO}}+0.3$	V
Operating temperature	Topr		\%ty $-30+0+75$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		to -40 to +125	${ }^{\circ} \mathrm{C}$

Allowable Operating Ranges

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}} \mathrm{IN}=1.0 \mathrm{~V}_{\mathrm{D}}, \mathrm{R}_{\mathrm{REF}}=300 \Omega, \mathrm{R}_{\mathrm{O}}=75 \Omega$

Parameter	Symbol	Eomditions ${ }^{\text {che }}$, $F^{\prime \prime}$	typ	max	Unit
Resolution	RES	\%			8	Bits
Maximum conversion speed	Fs max	V	30			MSPS
Power dissipation	Pd			330	400	mW
Zero-scale output voltage	Vzero	For each channtel $\psi^{*}+{ }^{\text {a }}$	-15	0	+15	mV
Full-scale output voltage	Vfull	For eachichannel thenty	0.92	1.00	1.08	V
Full-scale voltage ratio	FSR	\hat{F}	0	4	8	\%
Linearity error	I.L.	DGprêcision \% ${ }^{\text {a }}$			± 1.0	LSB
Differential linearity error	D.L.	EChrecisioft -			± 0.5	LSB
Reference voltage output	$\mathrm{V}_{\mathrm{REF}} \mathrm{OUT}$ /		0.99	1.00	1.01	V

Pin Assignment LC89080 (DIP42S)

Pin No.	Symbol	Description
1	DV ${ }_{\text {DD }}$	Digital system power supply (+5 V)
2	DA1	Channel A digital input (MSB)
3 to 8	DA2 to DA7	Channel A digital input
9	DA8	Channel A digital input (LSB)
10	DB1	Channel B digital input (MSB)
11 to 16	DB2 to DB7	Channel B digital input
17	DB8	Channel B digital input (LSB)
18	DC1	Channel C digital input (MSB)
19 to 24	DC2 to DC7	
25	DC8	Channel C digital input (LSB)
26	CLK	Clock input
27	DV ${ }_{\text {DD }}$	Digital system power supply (+5 V)
28	DGND	Digital system ground (0 V) , momer
29	ICOB	Channel C negative output. Connect to A.GND through an outputesistors (usualy
30	ICO	
31	$\mathrm{AV}_{\mathrm{DD}}$	Analog system power supply (+5 V)
32	IBOB	Channel B negative output. Connect to A, Giv throughan \%itat resistor R_{C} (usually 75Ω).
33	IBO	Channel B positive output. Connect to AGND through .and gitput resistor forusually 75Ω).
34	AGND	Analog system ground (0 V)
35	IAOB	Channel A negative output. Connect fo A.GND thepef an output restisim R_{O} (usually 75Ω).
36	IAO	Channel A positive output. Conneeft to A.GND throưot wn output resistor R_{O} (usually 75Ω).
37	$\mathrm{AV}_{\mathrm{DD}}$	Analog system power supply $\left(+5^{5} \mathrm{~V}\right)$,
38	COMP	Phase compensation capacitor. Conneesa $1 \mu \mathrm{~F}$ \%acitor beftwen this pin and ground.
39	$I_{\text {REF }}$	Reference current outpat, Connecteresistentheis 4 times the output resistance R_{O} to this pin.
40	$\mathrm{V}_{\text {REF }} \mathrm{IN}$	Reference voltage input This ing pin sets the analogotit dynamic range.
41	$\mathrm{V}_{\text {REF }} \mathrm{OUT}$	Reference voltage output. The output voltage is set to 0.2 times V_{DD} by a resistor divider. When V_{DD} is 5,0 , a 1.0 V refererice voltáge canbe âcquired from pin 40.
42	DGND	

Pin Assignment LC89080Q (QFP48A)

Pin No.	Symbol	Description
1 to 3	DA5 to 7	Channel A digital input
4	DA8	Channel A digital input (LSB)
5	DB1	Channel B digital input (MSB)
6	NC	Unused (no connection)
7 to 12	DB2 to DB7	Channel B digital input
13	DB8	Channel B digital input (LSB)
14	DC1	Channel C digital input (MSB)
15 to 18	DC2 to DC5	
19	DV ${ }_{\text {DD }}$	Digital system power supply (+5 V)
20	DC6	Channel C digital input
21	DC7	Channel C digital input
22	DC8	Channel C digital input (LSB)
23	CLK	Clock input
24	NC	Unused (no connection)
25	DV ${ }_{\text {DD }}$	Digital system power supply (+5 V) W
26	DGND	Digital system ground (0 V)
27	ICOB	Channel C negative output. Connect to A. GiN throughtan output resistor R_{O} (usually 75Ω).
28	ICO	
29	$\mathrm{AV}_{\mathrm{DD}}$	
30	$\mathrm{AV}_{\mathrm{DD}}$	
31	IBOB	Channel B negative output. Copnect to A.GND throughen output resistor R_{O} (usually 75Ω).
32	IBO	
33	AGND	Analog system ground $(0, j)$
34	IAOB	
35	IAO	Channel A positive qutpüt. Coneet to A.GND through pun dutput resistor R_{O} (usually 75Ω).
36	$\mathrm{AV}_{\mathrm{DD}}$	Analog system power'supply ft 5 V $\hat{\prime}$
37	COMP	Phase compensation capacitor. Coppectua $1 \mu \mathrm{~F}$ capacitor between this pin and ground.
38	NC	Unused (no eonfiection) ke , \% , \%
39	$\mathrm{I}_{\text {REF }}$	Reference currrent outpưt ©onnect a resistof thet is 4 times the output resistance R_{O} to this pin.
40	$\mathrm{V}_{\text {REF }} \mathrm{IN}$	
41	$\mathrm{V}_{\text {REF }} \mathrm{OUT}$	Referferice voltage outpu, the output voiltage is set to 0.2 times V_{DD} by a resistor divider. Wher $V_{D D}$ is 50 V , atio V feference veitage can be acquired from pin 40.
42	DGND	Digital systein oround (0 V)
43	DV ${ }_{\text {DD }}$	Eigital system power stupply (+5Vy
44	DV ${ }_{\text {DD }}$	Digital systeñ power supply (${ }^{(5 V)}$
45	DA1 γ	Channel Ad digital input (MSBy
46 to 48	DA2 to DA4	\%hantrena dighal input, \%

Pin Assignment LC89080Q (QFP48A)

Pin No.	Symbol	Description
1 to 3	DA5 to 7	Channel A digital input
4	DA8	Channel A digital input (LSB)
5	DB1	Channel B digital input (MSB)
6	NC	Unused (no connection)
7 to 12	DB2 to DB7	Channel B digital input
13	DB8	Channel B digital input (LSB)
14	DC1	Channel C digital input (MSB)
15 to 18	DC2 to DC5	
19	DV ${ }_{\text {DD }}$	Digital system power supply (+5 V)) $^{\text {a }}$
20	DC6	Channel C digital input \vec{y}^{4} 为
21	DC7	Channel C digital input
22	DC8	
23	CLK	Clock input
24	NC	Unused (no connection)
25	$\mathrm{DV}_{\mathrm{DD}}$	Digital system power supply (+5 V)
26	DGND	Digital system ground (0 V)
27	ICOB	Channel C negative output. Connect to AND through anotput resistor Ro (usually 75Ω).
28	ICO	
29	$\mathrm{AV}_{\mathrm{DD}}$	Analog system power supply ($+5 \mathrm{~V})^{*} \vec{F}^{(1)}$,
30	$\mathrm{AV}_{\mathrm{DD}}$	Analog system power supply ($+5 \mathrm{~V})^{2}$
31	IBOB	Channel B negative output. Connéct to A.GND throuthyan outputresistor R_{O} (usually 75Ω).
32	IBO	Channel B positive output. Comect to. A(M)
33	AGND	Analog system ground (0VF)
34	IAOB	Channel A negative outpuit. Connegt to A : GND flirough an oftput resistor R_{O} (usually 75Ω).
35	IAO	
36	$\mathrm{AV}_{\mathrm{DD}}$	
37	COMP	Phase comperisption capacitor. © obnecta $1 \mu \mathrm{~F}$, epabitor between this pin and ground.
38	NC	Unused (nocfinection) , +s, \% \%
39	$\mathrm{I}_{\text {REF }}$	Reference current output Connect a resistor that is 4 times the output resistance R_{O} to this pin.
40	$\mathrm{V}_{\text {REF }} \mathrm{IN}$	Refereng voltage inpup this input pin sets the analog output dynamic range.
41	$\mathrm{V}_{\text {REF }}$ OUT	Reference voltage putpuit The outputiolfage is set to 0.2 times V_{DD} by a resistor divider. Wheh V_{DD} is 5.0 V , atto V'referene yoltage can be acquired from pin 40.
42	DGND	Digital systern geund (0 V) $\hat{F}^{\text {b }}$
43	DV ${ }_{\text {DD }}$	Digital system powersupply (+5.5
44	$\mathrm{DV}_{\mathrm{DD}}$	Digitas systerh power supply ${ }^{3}\left(5{ }^{5} \mathrm{~V}\right)$
45	DA1 ${ }^{\text {f }}$	ChannutAA digital input (MSB)
46 to 48	DA2 to DA4	Channela digital inpyt

Sample Application Circuit: LC89080Q

Application circuit in which the output resistance is 75Ω and the internally generated 1-V reference voltage is used.

AC Characteristics at Ta -30 to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{BO}}=4.5$ to 5.5 V

Parameter	4**Symbol	Conditions	min	typ	max	Unit
Data setup time f	\%. \%		15			ns
Data hold time			15			ns
Output delay tine	W, What ${ }^{\text {d }}$			10		ns

Timing Chart

The digital inputs for all 3 channels are acquired on the rising edge of the clock input, after which the corresponding

Block Diagram

■ No produets desscribed or contained herein are intended for use in surgical implants, life-support systems, aerospace gquipment, haclear power confrol systems, vehicles, disaster/crime-prevention equipment and the like, the failure of / which finay idirectyor indirectly cause injury, death or property loss.

1 Anyöeppurchasing any products described or contained herein for an above-mentioned use shall:
(T) Acceptetil responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and ally their officers and employees, jointly and severally, against any and all claims and litigation and all dâmages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.

- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 1997. Specifications and information herein are subject to change without notice.

