LC75392, 75392M

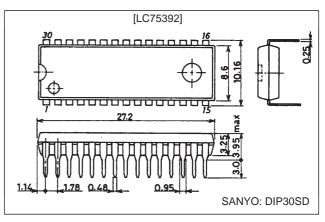
Single-Chip Electronic Volume Control System

Overview

The LC75392 (DIP-30SD) and the LC75392M (MFP-30S) are electronic volume control ICs that provide input and output switching, volume, and tone control functions controlled by data transferred over a serial interface.

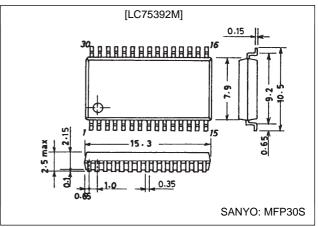
Functions

- Input and output switching: Four inputs and outputs can be switched independently.
- Volume control: A balance function can be implemented by controlling the left and right levels independently. Each channel can be set to 0 to -20 dB in 2 dB steps, -20 to -32 dB in 3 dB steps, -32 to -52 dB in 4 dB steps, -52 dB to -70 dB in 4.5 dB steps, and -∞.
- •Tone controls: Internal switches are provided to select between four sets of frequency characteristics. A buffer function can be implemented using external components.


Features

Serial data interface: Support for control and communication in the CCB format.

Package Dimensions


unit: mm

3196-DIP30SD

unit: mm

3216-MFP30S

Specifications

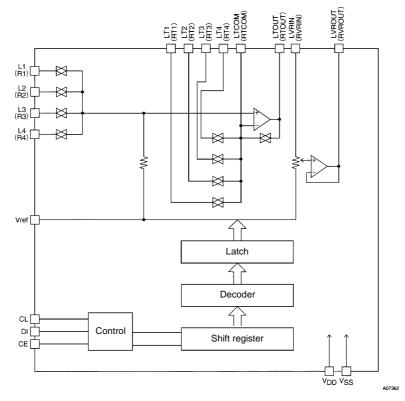
Absolute Maximum Ratings at Ta = 25° C, V_{SS} = 0 V

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max	V _{DD}	12	V
Maximum input voltage	V _{IN} max	CL, DI, CE, L1, L2, L3, L4, R1, R2, R3, R4	$V_{\rm SS}\!-\!0.3$ to $V_{\rm DD}\!+\!0.3$	V
Allowable power dissipation	Pd max	Ta ≤ 85°C	160	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-50 to +125	°C

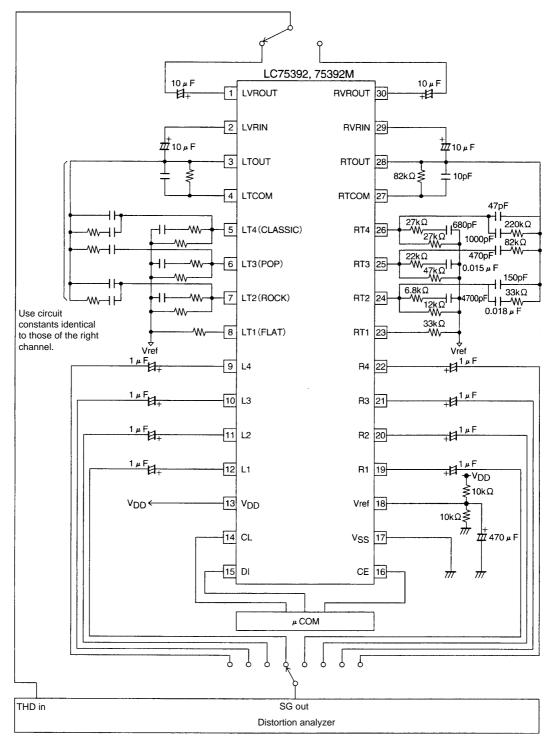
• CCB is a trademark of SANYO ELECTRIC CO., LTD.

• CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

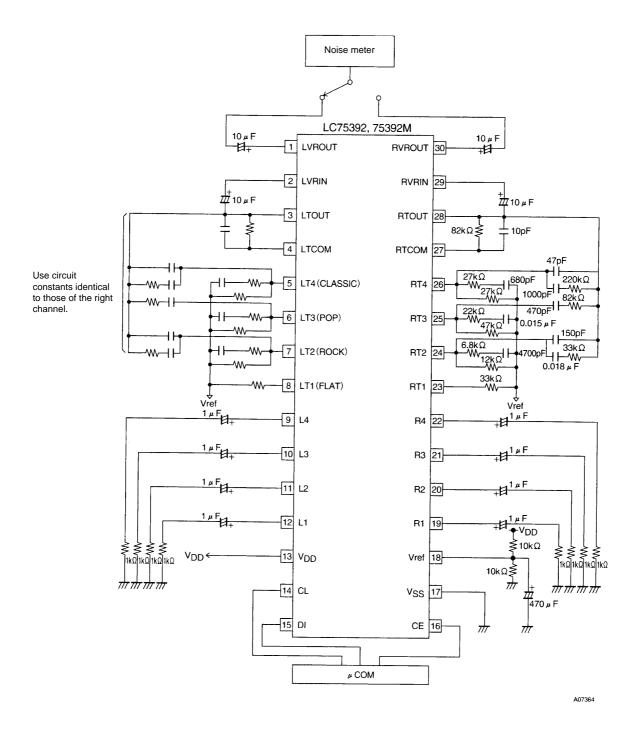

Allowable Operating Ranges at $Ta=25^{\circ}C,\,V_{SS}$ = 0 V

Parameter	Symbol	Conditions	Ratings			Unit	
Parameter	Symbol	Conditions	min	typ	max	Unit	
Supply voltage	V _{DD}	V _{DD}	5.5		11.0	V	
Input high-level voltage	V _{IH}	CL, DI, CE	4.0		V _{DD}	V	
Input low-level voltage	VIL	CL, DI, CE	V _{SS}		1.0	V	
Input voltage amplitude	V _{IN}	L1, L2, L3, L4, R1, R2, R3, R4	V _{SS}		V _{DD}	Vр-р	
Input pulse width	t _{øW}	CL	1.0			μs	
Setup time	t _{setup}	CL, DI, CE	1.0			μs	
Hold time	t _{hold}	CL, DI, CE	1.0			μs	
Operating frequency	fopg	CL			500	kHz	

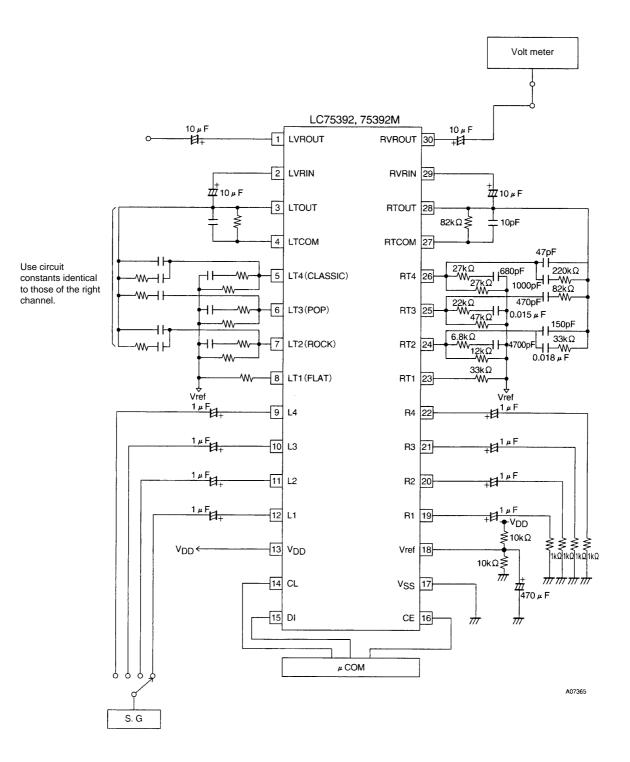

Electrical Characteristics at Ta = 25 $^{\circ}C,$ V_{DD} = 10 V, V_{SS} = 0 V

Deservator	Quarter	Conditions	Ratings				
Parameter	Symbol	Symbol Conditions -		typ	max	- Unit	
[Input Block]	·						
Input resistance	Rin	L1, L2, L3, L4, R1, R2, R3, R4		500		kΩ	
[Overall]							
Total barransia distantian	THD1	V _{IN} = 100 mV rms, f = 1 kHz, overall, buffer mode off, flat state		0.013		%	
Total harmonic distortion	THD2	V _{IN} = 100 mV rms, f = 20 kHz, overall, buffer mode off, flat state		0.013		%	
Crosstalk	СТ	V_{IN} = 1 V rms, f = 1 kHz, overall, Rg = 1 k Ω , buffer mode off, flat state		81		dB	
Output at maximum attenuation	V _O min	V_{IN} = 1 V rms, f = 1 kHz, main volume set to $-\infty$, buffer mode on		-80		dB	
	V _N 1	Flat overall (IHF-A), Rg = 1 k Ω , buffer mode off, flat state		15		μV	
Output noise voltage	V _N 2	Flat overall (DIN-AUDIO), Rg = 1 k Ω , buffer mode off, flat state		22		μV	
Current drain	I _{DD}	$V_{DD} - V_{SS} = 11 \text{ V}$		7	10	mA	
Input high-level current	IIH	CL, DI, CE, V _{IN} = 10 V			10	μA	
Input low-level current	IIL	CL, DI, CE, V _{IN} = 0 V	-10			μA	

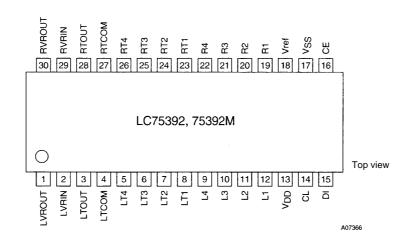
Equivalent Circuit Block Diagram



Test Circuit Total Harmonic Distortion



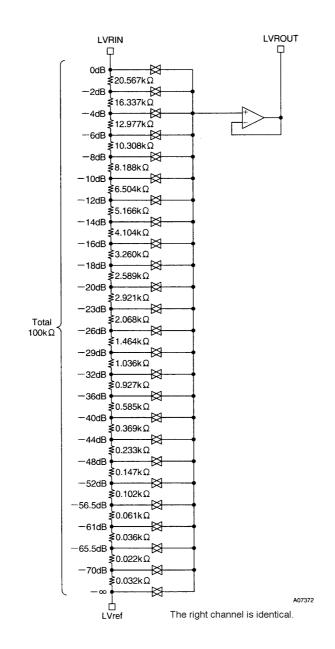
A07363


Output Noise Voltage

Crosstalk

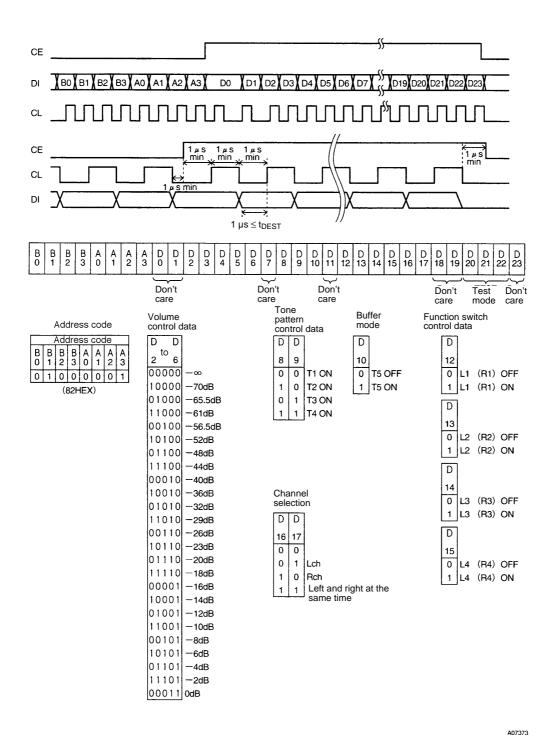
Pin Assignment

Pin Functions

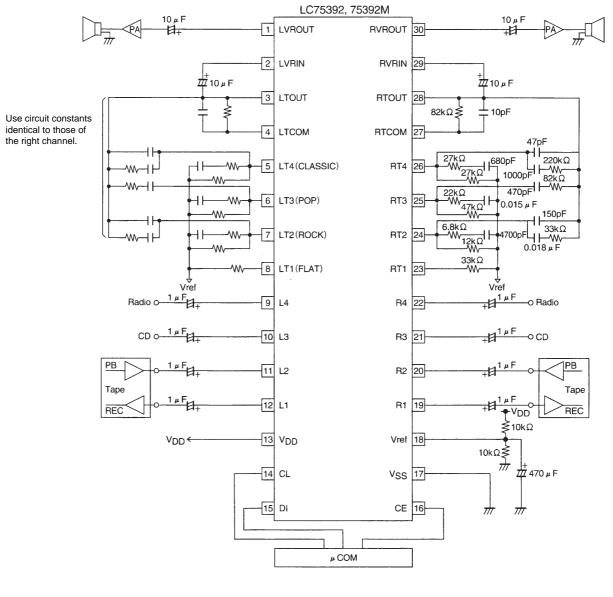

Pin	Pin No.	Function	Circuit
LVROUT RVROUT	1 30	Volume control outputs	A07368
LVRIN RVRIN	2 29	Volume control inputs	A07367
LTOUT RTOUT	3 28	Tone control circuit outputs	
LTCOM RTCOM	4 27	Tone control circuit operational amplifier inverting inputs	ж тт ллт А07369
LT1 LT2 LT3 LT4 RT1 RT2 RT3 RT4	8 7 6 5 23 24 25 26	Connections for the tone control pattern external constants	↓ VDD ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Continued on next page.

Continued from preceding page.


Pin	Pin No.	Function	Circuit
L1 L2 L3 L4 R1 R2 R3 R4	12 11 10 9 19 20 21 22	Audio signal inputs and outputs	VDD Vref A07370
V _{DD}	13	Power supply	
Vref	18	Analog system ground	
V _{SS}	17	Ground	
CL DI	14 15	Serial data and clock inputs for device control	A07370
CE	16	 Chip enable Data is read into an internal latch and the analog switches operate when this pin goes from high to low. Data transfers are enabled when this pin is high. 	A07370

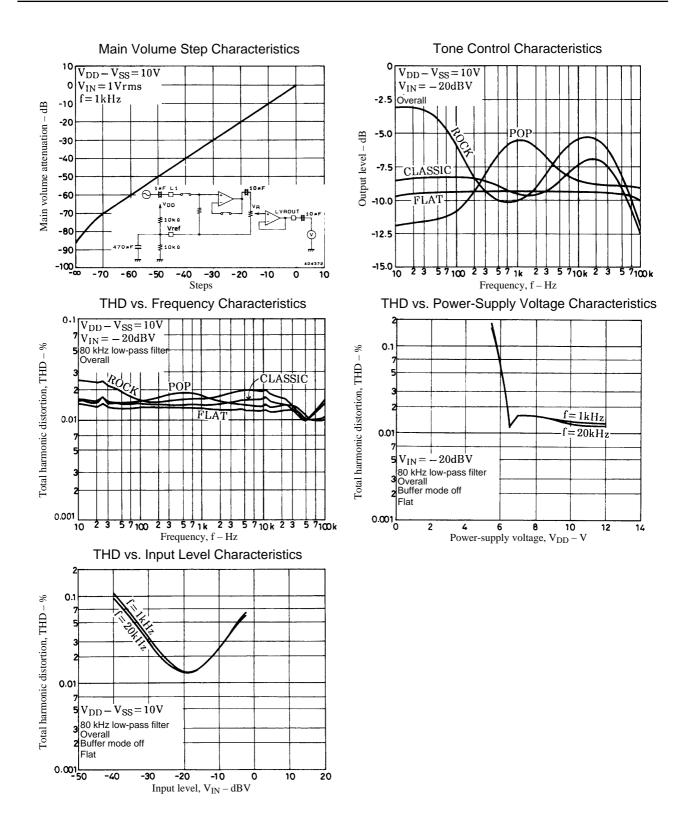
Volume Control Equivalent Circuit


Control System Timing and Data Format

To control the LC75392, applications must apply data in the stipulated format to the CE, CL, and DI pins. This data consists of 32 bits, of which 8 bits are the address and 24 bits are the control data.

Note: The bits D20, D21, and D22 are IC test mode control data. User applications must always set these bits to 0.

Sample Application Circuit (Three-input type)



A07374

Usage Notes

- The states of the internal analog switches are undefined immediately after power is first applied. Applications should apply muting to the outputs of this IC using external circuits until the control data has been set up.
- The CL, DI, and CE pin lines should be shielded by the ground pattern or shielded lines should be used to prevent the high-frequency digital signals that are transmitted over these lines from entering the analog system as noise.
- We recommend that applications use a sequence of several smaller steps to approach the final setting when changing the value of the volume control setting significantly. For example, the sequence shown below should be used when changing from 0 dB to $-\infty$. This can reduce switching noise.

Example: 0 dB \rightarrow -10 dB \rightarrow -20 dB \rightarrow -40 dB \rightarrow -70 dB \rightarrow - ∞

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of July, 1997. Specifications and information herein are subject to change without notice.