

No. 5484

Four-Bit Single-Chip Microcontrollers with 4, 6, and 8 KB of On-Chip ROM

Preliminary

Overview

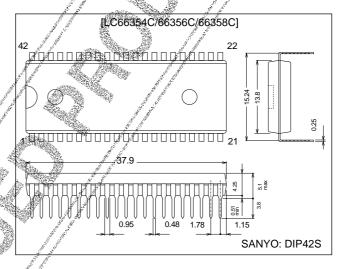
The LC66354C, LC66356C, and LC66358C are 4-bit CMOS microcontrollers that integrate on a single chip all the functions required in a system controller, including ROM, RAM, I/O ports, a serial interface, comparator inputs, three-value inputs, timers, and interrupt functions. These three microcontrollers are available in a 42-pin package.

These products differ from the earlier LC66358A Series and LC66358B Series in the power-supply voltage range, the operating speed, and other points.

Features and Functions

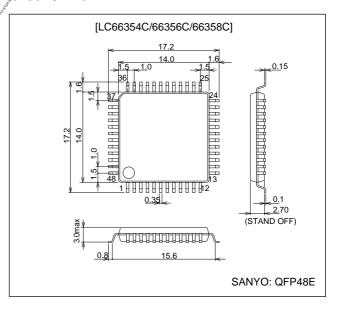
- On-chip ROM capacities of 4, 6, and 8 kilobytes, and an on-chip RAM capacity of 512×4 bits.
- Fully supports the LC66000 Series common instruction set (128 instructions).
- I/O ports: 36 pins
- 8-bit serial interface: two circuits (can be connected in cascade to form a 16-bit interface)
- Instruction cycle time: 0.92 to 10 µs (at 2.5 to 5.5 V)
 - For the earlier LC66358A Series: 1.96 to 10 us (at 3.0 to 5.5 V) and 3.92 to 10 µs (at 2.2 to 5.5 V)
 - For the earlier LC66358B Series, 0.92 to 10 µs (at 3.0 to 5.5 V)
- Powerful timer functions and prescalers
 - Time limit timer, event counter, pulse width measurement, and square wave output using a 12-bit timer.
 - Time limit timer, event counter, PWM output, and square wave output using an 8-bit timer.
 - Time base function using a 12-bit prescaler.
- Powerful interrupt system with sinterrupt factors and 8 interrupt vector locations.
 - External interrupts: 3 factors/3 vector locations
 - Internal interrupts: 5 factors/5 yector locations
- Flexible I/O functions

Comparator inputs, three-value inputs, 20-mA drive outputs, 15-V high voltage pins, and pull-up/open-drain


- Optional runaway detection function (watchdog timer)
- 8-bit I/O functions
- Power saving functions using halt and hold modes.
- Packages: DIP42S, QIP48E (QFP48E)

- · Evaluation LSIs
 - LC66599 (evaluation chip) + EVA85/800-TB6630X
 - LC66E308 (on-chip EPROM microcontroller) used together.

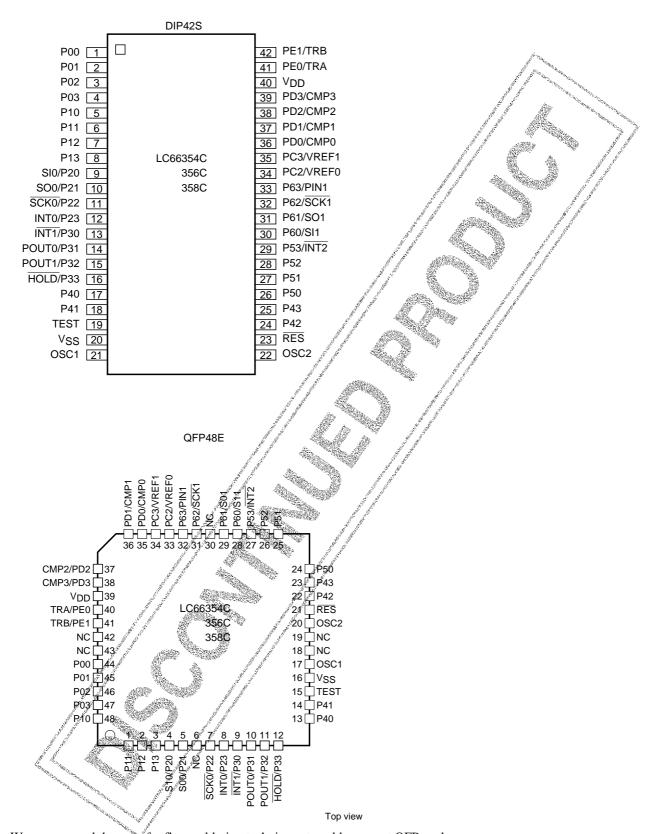
Package Dimensions


unit: mm

3025B-DIP42S

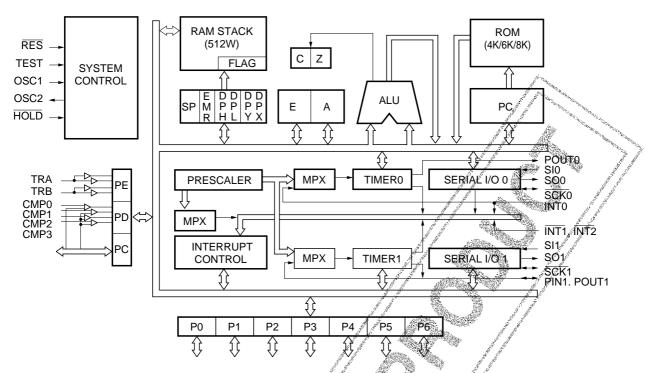
unit: mm

3156-QFP48E



Series Organization

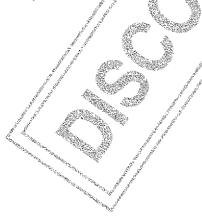
Type No.	No. of pins	ROM capacity	RAM capacity	Pac	kage	Features
LC66304A/306A/308A	42	4 K/6 K/8 KB	512 W	DIP42S	QFP48E	
LC66404A/406A/408A	42	4 K/6 K/8 KB	512 W	DIP42S	QFP48E	Normal versions
LC66506B/508B/512B/516B	64	6 K/8 K/12 K/16 KB	512 W	DIP64S	QFP64A	4.0 to 6.0 V/0.92 μs
LC66354A/356A/358A	42	4 K/6 K/8 KB	512 W	DIP42S	QFP48E	1110000
LC66354S/356S/358S	42	4 K/6 K/8 KB	512 W		QFP44M	Low-voltage versions
LC66556A/558A/562A/566A	64	6 K/8 K/12 K/16 KB	512 W	DIP64S	QFP64E	2.2 to 5.5 V/3.92 µs
LC66354B/356B/358B	42	4 K/6 K/8 KB	512 W	DIP42S	QFP48E	
LC66556B/558B	64	6 K/8 KB	512 W	DIP64S	QFP64E	Low-voltage high-speed versions 3.0 to 55 V/0.92 µs
LC66562B/566B	64	12 K/16 KB	512 W	DIP64S	QFP64E	3.0 to 6.5 V/0.92 μs
LC66354C/356C/358C	42	4 K/6 K/8 KB	512 W	DIP42S	QFP48	2,5 to 5,5 V/0.92 µs
LC662304A/2306A/2308A	42	4 K/6 K/8 KB	512 W	DIP42S	QFP48E	On-chip DTMF generator versions
LC662312A/2316A	42	12 K/16 KB	512 W	DIP42S	QFP48E	3.0 to 5.5 V/0.95 μs 🔧 🦯
LC665304A/665306A/665308A	48	4 K/6 K/8 KB	512 W	DIP48S	QF₽48E	Dual oscillator support
LC665312A/5316A	48	12 K/16 KB	512 W	DIP48S	QFP48E	3.0 to 5.5 V/0.95 µs
LC66E308	42	EPROM 8 KB	512 W	DIC42S with window	QFC48 with window	3 //
LC66P308	42	OTPROM 8 KB	512 W	DIP42S	QFP48E	and the second s
LC66E408	42	EPROM 8 KB	512 W	DIC42S with window	QEC48 with window	Window and OTP evaluation versions 4.5 to 5.5 V/0.92 μs
LC66P408	42	OTPROM 8 KB	512 W	DIP42S	QFP48E	4.5 το 5.5 γ/0.92 μs
LC66E516	64	EPROM 16 KB	512 W	DIC64S with window	QFC64 with window	
LC66P516	64	OTPROM 16 KB	512 W	DIP64S	QFP64E	
LC66E2316	42	EPROM 16 KB	512 W	DIC42S With window	QFC48 with window	4.5 to 5.5 V/0.95 μs
LC66E5316	52/48	EPROM 16 KB	512 W	DIC52S with window	QFC48 with window	- 4.0 to 0.0 v/0.80 μδ
LC66P2316*	42	OTPROM 16 KB	512 W	DIP42S	QFP48E	4.0 to 5.5 V/0.95 µs
LC66P5316	48	OTPROM 16 KB	512 W	DIP48S	QFP48E	4.0 to 3.3 γ/0.33 μs


Pin Assignments

We recommend the use of reflow-soldering techniques to solder-mount QFP packages.

Please consult with your Sanyo representative for details on process conditions if the package itself is to be directly immersed in a dip-soldering bath (dip-soldering techniques).

System Block Diagram



Differences between the LC66354C, LC66356C, and LC66358C and the LC6630X Series

	2 4 202 2024	
Item	LC6630X Series (Including the £C66599 evaluation chip)	LC6635XC Series
System differences Hardware wait time (number of cycles) when hold mode is cleared	65536 cycles About 64 ms at 4 MHz (Tcyc.= 1 us)	16384 cycles About 16 ms at 4 MHz (Tcyc = 1 μs)
Value of timer 0 after a reset (Including the value after hold mode is cleared)	Set to FF0.	Set to FFC.
Difference in major features Operating power-supply voltage and operating speed (cycle time)	• LQ66304A/306A/308A 4.0/to 6.0 V/0,92 to 10 μs • LC66E306/P308 4.5 to 5 & V/0 92 to 10 μs	2.5 to 5.5 V/0.92 to 10 μs • LC6635XA 2.2 to 5.5 V/3.92 to 10 μs 3.0 to 5.5 V/1.96 to 10 μs • LC6635XB 3.0 to 5.5 V/0.92 to 10 μs

- Note: 1. An RC oscillator cannot be used with the LC66354C, LC66356C, and LC66358C.

 2. There are other differences, including differences in output currents and port input voltages. For details, see the data sheets for the LC66308A, LC66E308, and LC66P308.
 - 3. Pay close attention to the differences listed here when using the LC66E308 and LC66P308 for evaluation.

Pin Function Overview

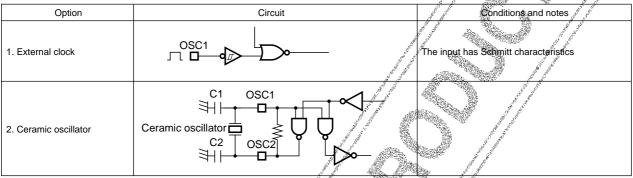
Pin	I/O	Overview	Output driver type	Options	State after a reset
P00 P01 P02 P03	I/O	I/O ports P00 to P03 Input or output in 4-bit or 1-bit units P00 to P03 support the halt mode control function	Pch: Pull-up MOS type Nch: Intermediate sink current type	Pull-up MOS or Nch OD output Output level on reset	High or low (option)
P10 P11 P12 P13	I/O	I/O ports P10 to P13 Input or output in 4-bit or 1-bit units	Pch: Pull-up MOS type Nch: Intermediate sink current type	Pull-up MOS or Nich Op output Qutput level on reset.	High or low (option)
P20/SI0 P21/SO0 P22/SCK0 P23/INT0	I/O	I/O ports P20 to P23 Input or output in 4-bit or 1-bit units P20 is also used as the serial input SI0 pin. P21 is also used as the serial output SO0 pin. P22 is also used as the serial clock SCK0 pin. P23 is also used as the INT0 interrupt request pin, and also as the timer 0 event counting and pulse width measurement input.	Pch: CMOS type Nch: Intermediate sink current type Nch: +15-V handling when OD option selected Pch: Pch: CMOS type Type Type Type Type Type Type Type T	CMOS or Non OD output	H
P30/INT1 P31/POUT0 P32/POUT1	1/0	I/O ports P30 to P32 Input or output in 3-bit or 1-bit units P30 is also used as the INT1 interrupt request. P31 is also used for the square wave output from timer 0. P32 is also used for the square wave output from timer 1.	Picht CMOS type Nich: Intermediate sink current type Nich: +15-V handling when OB option selected	eMOS or Nch OD output	Н
P33/HOLD	ı	Hold mode control input Hold mode is set up by the HOLD instruction when HOLD is fow. In hold mode, the CPU is restarted by setting HOLD to the high level. This pin can be used as input port P33 along with P30 to P32. When the P33/HOLD pin is at the low level, the CPU will not be reset by a low level on the RES pin. Therefore, applications must not set P33/HOLD low, when power is first applied.			
P40 P41 P42 P43	ŽĮO	I/O ports P40 to P43 Input or output in 4-bit or 1-bit units Input or output in 8-bit units when used in conjunction with P50 to P53. Can be used for output of 8-bit ROM data when used in conjunction with P50 to P53.	Pch: Pull-up MOS type Nch: Intermediate sink current type Nch: +15-V handling when OD option selected	Pull-up MOS or Nch OD output	Н
P50 P51 P52 P53/INT2	VO	Ports P50 to P53 Input or output in 8-bit units when used in conjunction with P40 to P43. Cap be used for output of 8-bit ROM data when used in conjunction with P40 to P43. P53 is also used as the INT2 interrupt request.	Pch: Pull-up MOS type Nch: Intermediate sink current type Nch: +15-V handling when OD option selected	Pull-up MOS or Nch OD output	Н

Pin	I/O	Overview	Output driver type	Options	State after a reset
P60/SI0 P61/SO1 P62/SCK1 P63/PIN1	1/0	I/O ports P60 to P63 Input or output in 4-bit or 1-bit units P60 is also used as the serial input SI1 pin. P61 is also used as the serial output SO1 pin. P62 is also used as the serial clock SCK1 pin. P63 is also used for the event count input to timer 1.	Pch: CMOS type Nch: Intermediate sink current type Nch: +15-V handling when OD option selected	CMOS or Nch OD output	H H
PC2/VREF0 PC3/VREF1	1/0	I/O ports PC2 and PC3 Input or output in 2-bit or 1-bit units PC2 is also used as the VREF0 comparator comparison voltage pin. PC3 is also used as the VREF1 comparator comparison voltage pin.	Pch: CMOS type Nch: Intermediate sink current type	CMOS or Nets QD output	A de
PD0/CMP0 PD1/CMP1 PD2/CMP2 PD3/CMP3	ı	Dedicated input ports PD0 to PD3 These pins can be switched in software to function as comparator inputs. The comparison voltage for PD0 is provided by VREF0. The comparison voltage for PD1 to PD3 is provided by VREF1. Pins PD0 and PD1 can be set to the comparator function individually, but pins PD2 and PD3 are set together.			Normal input
PE0/TRA PE1/TRB	I	Dedicated input ports These pins can be switched in software to function as three-value inputs.			Normal input
OSC1 OSC2	I 0	System clock oscillator connections. When an external clock is used leave OSC2 open and connect the clock signal to OSC1.		Use of either a ceramic oscillator or an external clock can be selected.	
RES	I	System reset input When the P33/HOLD pin is at the high level, a low level input to the RES pin will initialize the CPU.			
TEST	I	CPU test pin This pin must be connected to Vss during normal operation.			
V _{DD} V _{SS}		Power supply pilis			

Note: Pull-up MOS type: The output circuit includes a MOS transistor that pulls the pin up to V_{DD}.

CMOS output: Complementary output.

OD output: Open-drain output.

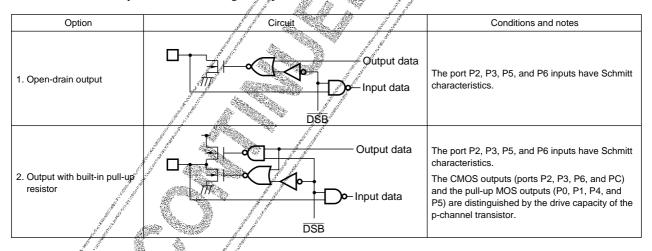

User Options

1. Port 0 and 1 output level at reset option

The output levels at reset for I/O ports 0 and 1, in independent 4-bit groups, can be selected from the following two options.

Option	Conditions and notes
Output high at reset	The four bits of ports 0 or 1 are set in a group
2. Output low at reset	The four bits of ports 0 or 1 are set in a group

2. Oscillator circuit options



Note: There is no RC oscillator option.

3. Watchdog timer option

A runaway detection function (watchdog timer) can be selected as an option.

- 4. Port output type options
 - The output type of each bit (pin) in ports P0, P1, P2, P3 (except for the P33/HOLD pin), P4, P5, P6, and PC can be selected individually from the following two options.

• The port PD comparator input and the port PE three-value input are selected in software.

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS} = 0$ V

Parameter	Symbol	Conditions	Ratings	Unit	Note
Maximum supply voltage	V _{DD} max	V _{DD}	-0.3 to +7.0	V	
Input voltage	V _{IN} 1	P2, P3 (except for the P33/HOLD pin), P4, P5, and P6	-0.3 to +45.0	٧	1
	V _{IN} 2	All other inputs	–0.3 to V _{DD} + 0.3	V. V	2
Output voltage	V _{OUT} 1	P2, P3 (except for the P33/HOLD pin), P4, P5, and P6	-0.3 to #15.0	**************************************	1
	V _{OUT} 2	All other inputs	-0.3 to V _{DD} + 0.3	V	2
	I _{ON}	P0, P1, P2, P3 (except for the P33/ HOLD pin), P4, P5, P6, and PC	20	mA,	3
Output current per pin	-I _{OP} 1	P0, P1, P4, P5	2	mA#	4
	-I _{OP} 2	P2, P3 (except for the P33/HOLD pin), P6, and PC	4	μήA	4
	Σ I _{ON} 1	P0, P1, P2, P3 (except for the P33/HQLD pin), P40, and P41	75,	mA	3
Total pin aurrent	ΣI _{ON} 2	P5, P6, P42, P43, PC	/75 [/]	mA	3
Total pin current	Σ I _{OP} 1	P0, P1, P2, P3 (except for the P38/HOLD pin), P40, and P41	25	mA	4
	ΣI _{OP} 2	P5, P6, P42, P43, PC	25	mA	4
Allowable newer dissination	Pd max	Ta = -30 to +70°C	<i>A</i> 600	mW	
Allowable power dissipation	Pumax	DFP48E	430	mW	5
Operating temperature	Topr		_30 to +70	°C	
Storage temperature	Tstg		_55 to +125	°C	

Note: 1. Applies to pins with open-drain output specifications. For pins with other than open-drain output specifications, the ratings in the pin column for that pin apply.

2. For the oscillator input and output pins, levels up to the free-running oscillation level are allowed.

- 3. Sink current
- Shirk current
 Source current (Applies to pins with pull-up output and CMOS output specifications.)
 We recommend the use of reflow soldering techniques to solder mount QFP packages.
 Please consult with your Sanyo representative for details on process conditions if the package itself is to be directly immersed in a dip-soldering bath (dip-soldering techniques).

Allowable Operating Ranges at Ta = -30 to $+70^{\circ}C$, $V_{SS} = 0$ V, $V_{DD} = 2.5$ to 5.5 V, unless otherwise specified.

Parameter	Symbol	Conditions	min	typ	max	Unit	Note
Operating supply voltage	V_{DD}	V _{DD} : 0.92 Tcyc 10 μs	2.5		5.5	V	
Memory retention supply voltage	V _{DD} H	V _{DD} : During hold mode	1.8		5.5	V	
	V _{IH} 1	P2, P3 (except for the P33/HOLD pin), P4, P5, and P6: N-channel output transistor off	0.8 V _{DD}	2	+13.5	V	1
Input high-level voltage	V _{IH} 2	P33/HOLD, RES, OSC1: N-channel output transistor off	0.8 V _{DD}		V _{DD}	V	2
. 0	V _{IH} 3	P0, P1, PC, PD, PE: N-channel output transistor off	0.8 V _{DD}	A de la companya della companya della companya de la companya della companya dell	V _{DD}	V. V.	3
	V _{IH} 4	PE: With 3-value input used, V _{DD} = 3.0 to 5.5 V	0.8 V _{DD}	11 1	V_{DD}	V >	À
Mid-level input voltage	V_{IM}	PE: With 3-value input used, V _{DD} = 3.0 to 5.5 V	0.4 V _{DD}	1 43	0.6 V _{DD}	Val	
Common-mode input	V _{CMM} 1	PD0, PC2: When the comparator input is used, V _{DD} = 3.0 to 5.5 V	1.5		V _{DD}	y	
voltage range	V _{CMM} 2	PD1, PD2, PD3, PC3: When the comparator input is used, V _{DD} = 3.0 to 5.5 V	V _{SS}		V _{DD} – 1 ₋ 5	V	
	V _{IL} 1	P2, P3 (except for the P33/HOLD pin), P5, P6, RES, and OSC1: N-channel output transistor off			0.2 V _{DD}	V	2
Imput lave lavel valtage	V _{IL} 2	P33/ HOLD : V _{DD} = 1.8 to 5.5 V	20.	0.2 V _{DD}	V		
Input low-level voltage	V _{IL} 3	P0, P1, P4, PC, PD, PE, TEST: N-channel output transistor off	V _S §	1 A	0.2 V _{DD}	V	3
	V _{IL} 4	PE: With 3-value input used, V _{DD} = 3.0 to 5.5 V	. Vss	and a second	0.2 V _{DD}	V	
Operating frequency (instruction cycle time)	fop (Tcyc)		0.4 (10)		4.35 (0.92)	MHz (µs)	
[External clock input conditions]				11			
Frequency	f _{ext}	OSC1: Defined by Figure 1. Input the clock signal to OSC1 and leave OSC2 open. (External clock input must be selected as the oscillator circuit option.)	0.4		4.35	MHz	
Pulse width	t _{extH} , t _{extL}	OSC1: Defined by Figure 1. Input the clock signal to OSC1 and leave OSC2 open. (External clock input must be selected as the oscillator circuit option.)	100			ns	
Rise and fall times	t _{extR} , t _{extF}	OSC1: Detined by Figure 1. Input the clock signal to OSC1 and leave OSC2 open. (External clock input must be selected as the oscillator circuit option)			30	ns	

Note: 1. Applies to pins with open-drain specifications. However, V_{II}2 applies to the P33/HOLD pin.
When ports P2, P3, and P6 have CMOS output specifications they cannot be used as input pins.

2. Applies to pins with open-drain specifications.

3. When RE is used as a three-value input, V_{II}4 V_{III}, and V_{II}4 apply. When the ports PC pins have CMOS output specifications they cannot be used as input pins.

Electrical Characteristics at Ta = -30 to +70 $^{\circ}C,\,V_{SS}$ = 0 V, V_{DD} = 2.5 to 5.5 V unless otherwise specified.

Parameter		Symbol	Conditions	min	typ	max	Unit	Note
		I _{IH} 1	P2, P3 (except for the P33/ $\overline{\text{HOLD}}$ pin), P4, P5, and P6: V _{IN} = 13.5 V, with the output Nch transistor off			5.0	μА	1
Input high-level current		I _{IH} 2	P0, P1, PC, OSC1, RES, P33/HOLD: V _{IN} = V _{DD} , with the output Nch transistor off		g/	1.0	μΑ	1
		I _{IH} 3	PD, PE, PC2, PC3: $V_{IN} = V_{DD}$, with the output Nch transistor off			1.0	μA	1
lanut laur laural aurrant		I _{IL} 1	Input ports other than PD, PE, PC2, and PC3: V _{IN} = V _{SS} , with the output Nch transistor off	-1.0	A San A		pΑ	2
Input low-level current		I _{IL} 2	PC2, PC3, PD, PE: V _{IN} = V _{SS} , with the output Nch transistor off	-1.0	1 42	, and a	μA	2
Output high-level voltage		V _{OH} 1	P2, P3 (except for the P33/ $\overline{\text{HOLD}}$ pin), P6, and PC: I _{OH} = -1 mA P2, P3 (except for the P33/ $\overline{\text{HOLD}}$ pin), P6, and PC: I _{OH} = -0.1 mA	V _{DD} - 1.0		<i>3</i>	V V	3
		V _{OH} 2	P0, P1, P4, P5: I _{OH} = -50 μA P0, P1, P4, P5: I _{OH} = -30 μA	V _{DD} - 1.0 · V _{DD} = 0.5			V	4
Output pull-up current		I _{PO}	P0, P1, P4, P5: V _{IN} = V _{SS} , V _{DD} = 5.5 V	-1.6		A SECTION AND A SECTION ASSET AND A SECTIO	mA	4
		V _{OL} 1	P0, P1, P2, P3, P4, P5, P6, and PC (except for the P33/HOLD pin): I _{OL} = 4.6 mA		100	0.4	V	5
Output low-level voltage		V _{OL} 2	P0, P1, P2, P3, P4, P5, P6, and P6 (except for the P33/HOLD pin): LoL # 8 mA		and the second	1.5	V	
Output off lookage ourron		I _{OFF} 1	P2, P3, P4, P5, P6: V _{IN} = 13.5 V		A A	5.0	μA	5
Output on leakage current	omparator offset voltage		P0, P1, PC: V _{IN} = V _{DD}		J	1.0	μA	5
Comparator offset voltage	;	V _{OFF} 1	PD1 to PD3: $V_{IN} = V_{SS}$ to $V_{DD} - 1.5 \text{ V}$, $V_{DD} = 3.0$ to 5.5 V		±50	±300	mV	
		V _{OFF} 2	PD0: $V_{IN} = 1.5 \text{ to } V_{DD}$, $V_{DD} = 3.0 \text{ to } 5.5 \text{ V}$	11	±50	±300	mV	
[Schmitt characteristics]				55				
Hysteresis voltage		V _{HIS}		1	0.1 V _{DD}			
High-level threshold voltage	ge	Vt H	P2, P3, P5, P6, OSC1 (EXT), RES	0.5 V _{DD}		0.8 V _{DD}	V	
Low-level threshold voltage	je	Vt L		0.2 V _{DD}		0.5 V _{DD}	V	
[Ceramic oscillator]								
Oscillator frequency		f _{CF}	OSC1, OSC2: Figure 2, 4 MHz		4.0		MHz	
Oscillator stabilization time	е	f _{CFS}	Figure 3, 4 MHz			10	ms	
[Serial clock]		1	<u>/</u>	ı				
Cycle time	Input	t _{CKCY}		0.9			μs	
,	Output	18	SCK0, SCK1: With the timing of Figure 4 and	2.0			Tcyc	
Low-level and high-level	Input	Acki.	the test load of Figure 5.	0.4			μs	
pulse widths	Output	,‡скн		1.0			Тсус	
Rise an fall times	Output	t _{CKR} , t _{CKF}				0.1	μs	
[Serial input]		6.00						
Data setup time		₹c _K	SIO, SI1: With the timing of Figure 4. Stipulated with respect to the rising edge (1) of	0.3			μs	
Data hold time		t _{CKI}	SCKO or SCK1.	0.3			μs	
[Serial output]		W0		T			T	
Output delay time		ско	SOO SO1: With the timing of Figure 4 and the test load of Figure 5. Stipulated with respect to the falling edge (\$\psi\$) of \$\overline{SCK0}\$ or \$\overline{SCK1}\$.			0.3		
and the second second	400		7	I.				

Parameter	Symbol	Conditions	min	typ	max	Unit	Note
[Pulse conditions]							
INT0 high and low-level $t_{\rm IOH},t_{\rm IOL}$		INTO: Figure 6, conditions under which the INTO interrupt can be accepted, conditions under which the timer 0 event counter or pulse width measurement input can be accepted	2	No.		Тсус	
High and low-level pulse widths for interrupt inputs other than INT0	t_{IIH} , t_{IIL}	INT1, INT2: Figure 6, conditions under which the corresponding interrupt can be accepted	2		A STATE OF THE PARTY OF THE PAR	Tcyc	
PIN1 high and low-level pulse widths	t _{PINH} , t _{PINL}	PIN1: Figure 6, conditions under which the timer 1 event counter input can be accepted	2		42	Тсус	
RES high and low-level pulse widths	t _{RSH} , t _{RSL}	RES: Figure 6, conditions under which reset can be applied.	3			Tcyc	â.
			Je standar	8	VEN.	the state of the s	
Comparator response speed	T _{RS}	PD: Figure 7, V _{DD} = 3.0 to 5.5 V	and the second		20	ms	
Operating current drain	1	V _{DD} : 4-MHz ceramic oscillator		3.0	5.0	/ mA	6
Operating current drain	IDD OP	V _{DD} : 4-MHz external clock		3.0	5.0	mA	0
Halt mode current drain		V _{DD} : 4-MHz ceramic oscillator		1.0	2 .0,	mA	
Hait mode current drain	IDDHALT	V _{DD} : 4-MHz external clock	195	i#.0	2 .0	mA	
Hold mode current drain	I _{DDHOLD}	V _{DD} : V _{DD} = 1.8 to 5.5 V	199	0.01	⁷ / 10	μA	

- Note: 1. With the output Nch transistor off in shared I/O ports with the open-drain output specifications. These pins cannot be used as input pins if the CMOS output specifications are selected.
 - 2. With the output Nch transistor off in shared I/O ports with the open-drain output specifications. The rating for the pull-up output specification pins is stipulated in terms of the output pull-up current IPO. These pins cannot be used as input pins it the CMOS output specifications are selected.
 - 3. With the output Nch transistor off for CMOS output specification pins.
 - 4. With the output Nch transistor off for pull-up output specification pins
 - 5. With the output Nch transistor off for open-drain output specification pins.
 - 6. Reset state

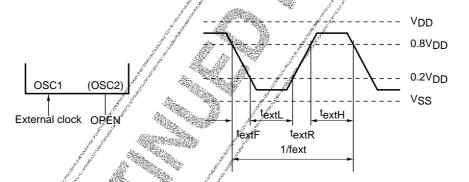
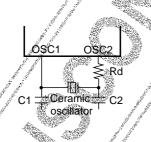



Figure 1 External Clock Input Waveform

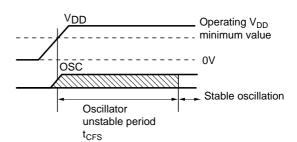


Figure 2 Ceramic Oscillator Circuit

Figure 3 Oscillator Stabilization Period

Table 1 Guaranteed Ceramic Oscillator Constants

4 MHz	C1/= 3/3 pF ± 10%	4 MHz	C1 = 33 pF ± 10%
(Murata Mfg. Co., Ltd.)	C2 ≤ 33 pF ± 10%	(Kyocera Corporation)	C2 = 33 pF ± 10%
CSA4.00MG	Rd = 0	KBR4.0MS	Rd = 0

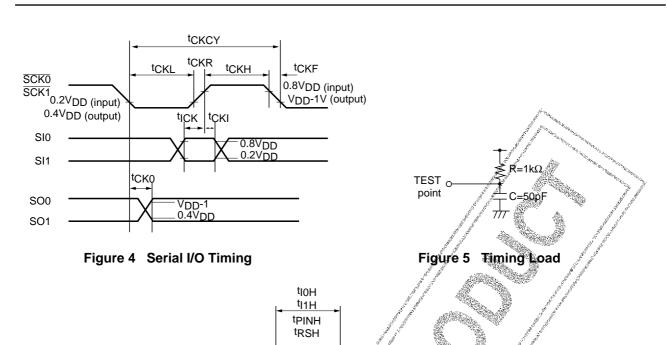
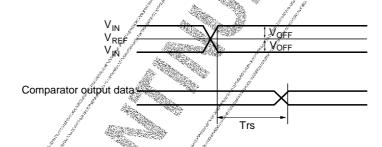



Figure 6 Input Timing for the INTO, INT1, INT2, PIN1, and RES pins

ti1L tPINL

 $0.2V_{DD}$

 $0.8V_{DD}$

Figure 7 Comparator Response Speed Trs Timing

LC66XXX Series Instruction Table (by function)

Abbreviations:

AC: Accumulator
E: E register
CF: Carry flag
ZF: Zero flag

HL: Data pointer DPH, DPL XY: Data pointer DPX, DPY

M: Data memory

M (HL): Data memory pointed to by the DPH, DPL data pointer

M (XY): Data memory pointed to by the DPX, DPY auxiliary data pointer

M2 (HL): Two words of data memory (starting on an even address) pointed to by the DPL data pointer

SP: Stack pointer

M2 (SP): Two words of data memory pointed to by the stack pointer M4 (SP): Four words of data memory pointed to by the stack pointer

in: n bits of immediate data

t2: Bit specification

t2	11	10	01	00
Bit	23	2 ²	21	20

PCh: Bits 8 to 11 in the PC
PCm: Bits 4 to 7 in the PC
PCl: Bits 0 to 3 in the PC
Fn: User flag, n = 0 to 15

TIMER0: Timer 0
TIMER1: Timer 1
SIO: Serial register

P: Port

P (i4): Port indicated by 4 bits of immediate data

INT: Interrupt enable flag

(), []: Indicates the contents of a location

←: Transfer direction, result.

∀: Exclusive or
∧: Logical and
∀: Logical or
+: Addition
-: Subtraction

—: Taking the one's complement

	Maamania	Instructi	on code	er of	s of	Operation	Description	Affected	Note
	Mnemonic	D ₇ D ₆ D ₅ D ₄	D ₃ D ₂ D ₁ D ₀	Number bytes	Number cycles	Operation	Description	status bits	Note
[Accumula	ator manipulation instru	ictions]							
CLA	Clear AC	1 0 0 0	0 0 0 0	1	1	AC ← 0 (Equivalent to LAI 0.)	Clear AC to 0.	ZF	Has a vertical skip function.
DAA	Decimal adjust AC in addition	1 1 0 0 0 0 1 0	1 1 1 1 0	2	2	AC ← (AC) + 6 (Equivalent to ADI 6.)	Add six to AC.	ZF	
DAS	Decimal adjust AC in subtraction	1 1 0 0 0 0 0 1 0	1 1 1 1 1 1 1 0 1 0	2	2	AC ← (AC) + 10 (Equivalent to ADI 0AH.)	Add 10 to AC.	ZF	And the state of t
CLC	Clear CF	0 0 0 1	1 1 1 0	1	1	CF ← 0	Clear CF to 0.	CF 🔆	77
STC	Set CF	0 0 0 1	1 1 1 1	1	1	CF ← 1	Set CF to 1.	CF 🖑	1,3
CMA	Complement AC	0 0 0 1	1 0 0 0	1	1	$AC \leftarrow \overline{(AC)}$	Take the one s complement of AC.	ZF	Jack Jack
IA	Increment AC	0 0 0 1	0 1 0 0	1	1	AC ← (AC) + 1	Increment AC.	ŽF, CF	j j
DA	Decrement AC	0 0 1 0	0 1 0 0	1	1	AC ← (AC) – 1	Decrement AC.	ZF, CF	
RAR	Rotate AC right through CF	0 0 0 1	0 0 0 0	1	1	$\begin{array}{l} AC_3 \leftarrow (CF), \\ ACn \leftarrow (ACn + 1), \\ CF \leftarrow (AC_0) \end{array}$	Shift AC (including CF) right.	CF	
RAL	Rotate AC left through CF	0 0 0 0	0 0 0 1	1	1	$AC_0 \leftarrow (CF)$, $ACn + 1 \leftarrow (ACn)$, $CF \leftarrow (AC_3)$	Shift AC (including CF) left.	CF, ZF	
TAE	Transfer AC to E	0 1 0 0	0 1 0 1	1	1	E ← (AC)	Transfer the contents of AC to E.		
TEA	Transfer E to AC	0 1 0 0	0 1 1 0	1	1	AC ← (E)	Transfer the contents of E to AC.	ZF	
XAE	Exchange AC with E	0 1 0 0	0 1 0 0	1	1	(AC) ↔ (E)	Exchange the contents of AC and E.		
[Memory	manipulation instruction	ns]	•			7.7	May 11	•	
IM	Increment M	0 0 0 1	0 0 1 0	1	1.29	M* (HL) ← [M (HL)] → 1	Increment M (HL).	ZF, CF	
DM	Decrement M	0 0 1 0	0 0 1 0	1 1	A A	M (HL) ← [M,(HL)] – 1	Decrement M (HL).	ZF, CF	
IMDR i8	Increment M direct	1 1 0 0 I ₇ I ₆ I ₅ I ₄	0 1 1 1 l ₃ l ₂ l ₁ l ₀	2	2	M (18) — [M (18)] + 1	Increment M (i8).	ZF, CF	
DMDR i8	Decrement M direct	1 1 0 0 I ₇ I ₆ I ₅ I ₄	0 0 1 1 1 ₃ 1 ₂ 1 ₁ 1 ₀	2	2	M (i8) ← [M (i8)] – 1.//	Decrement M (i8).	ZF, CF	
SMB t2	Set M data bit	0 0 0 0	1/1/t ₁ t ₀	1	i.	[M·(HL), t2] ← 1	Set the bit in M (HL) specified by t0 and t1 to 1.		
RMB t2	Reset M data bit	0 0 1 0	1 1 t ₁ t ₀	1	1	[M (HL), t2] ← 0	Clear the bit in M (HL) specified by t0 and t1 to 0.	ZF	
[Arithmeti	c, logic and comparisor	n instructions]		490	V			•	
AD	Add M to AC	0,000 0	0110	1	1 ,	ÅÇ ← (AC) + [M (HL)]	Add the contents of AC and M (HL) as two's complement values and store the result in AC.	ZF, CF	
ADDR i8	Add M direct to AC	1 1 0 0 I ₇ I ₆ I ₅ I ₄	1 0 0 1 1 ₃ 1 ₂ 1 ₁ 1 ₀	2	2	$AC \leftarrow (AC) + [M \ (i8)]$	Add the contents of AC and M (i8) as two's complement values and store the result in AC.	ZF, CF	
ADC	Add M to AC with CF	0 0 0 0	0 0 1 0	1	1	AC ← (AC) + [M (HL)] + (CF)	Add the contents of AC, M (HL) and C as two's complement values and store the result in AC.	ZF, CF	
ADI i4	Add immediate deta to AC	1 1 0 0 0 0 1 0	1 1 1 1 1 1 1 ₃ 1 ₂ 1 ₁ 1 ₀	2	2	$AC \leftarrow (AC) + I_3, I_2, I_1, I_0$	Add the contents of AC and the immediate data as two's complement values and store the result in AC.	ZF	
SUBC	Subtract AC from M with CF	0 0 0 1	0 1 1 1	1	1	AC ← [M (HL)] − (AC) − (CF)	Subtract the contents of AC and \overline{CF} from M (HL) as two's complement values and store the result in AC.	ZF, CF	CF will be zero if there was a borrow and one otherwise.
ANDA	And M with AC then store AC	0 0 0 0	0 1 1 1	1	1	$\begin{array}{l} AC \leftarrow (AC) \land \\ [M \ (HL)] \end{array}$	Take the logical and of AC and M (HL) and store the result in AC.	ZF	
ORA	Or M with AC then store AC	0 0 0 0	0 1 0 1	1	1	$\begin{array}{c} AC \leftarrow (AC) \ \lor \\ [M \ (HL)] \end{array}$	Take the logical or of AC and M (HL) and store the result in AC.	ZF	

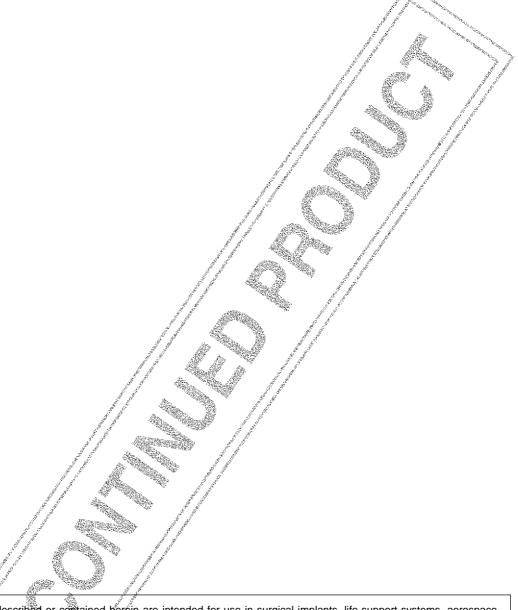
Continued from preceding page.

		Instruction	struction code		er of			Affected	
	Mnemonic	D ₇ D ₆ D ₅ D ₄	D ₃ D ₂ D ₁ D ₀	Vumb oytes	Number o	Operation	Description	status bits	Note
[Arithmeti	c, logic and comparisor	n instructions]			20				
EXL	Exclusive or M with AC then store AC	0 0 0 1	0 1 0 1	1	1	AC ← (AC) ∀ [M (HL)]	Take the logical exclusive or of AC and M (HL) and store the result in AC.	ZF	to longer
ANDM	And M with AC then store M	0 0 0 0	0 0 1 1	1	1	M (HL) ← (AC) ∧ [M (HL)]	Take the logical and of AC and M (HL) and store the result in M (HL).	#	A STATE OF THE STA
ORM	Or M with AC then store M	0 0 0 0	0 1 0 0	1	1	M (HL) ← (AC) ∨ [M (HL)]	Take the logical or of AC and M (HL) and store the result in M (HL).	ZF	
СМ	Compare AC with M	0 0 0 1	0 1 1 0	1	1	[M (HL)] + (AC) + 1	Compare the contents of AC and M (HL) and set or clear CF and ZF according to the result (Magnitude comparison CF ZF [M (HL)] > (AC) 0 0 [M (HL)] = (AC) 1 1 [M (HL)] < (AC) 1 0	ZF, QF	
CI i4	Compare AC with immediate data	1 1 0 0 1 0	1 1 1 1 l ₃ l ₂ l ₁ l ₀	2	2	√3 ½ 1₁ 1₀ + (AC) +1	Compare the contents of AC and the immediate data is 12 ft to and set of clear CF and ZF according to the result. Magnitude CF ZF Comparison CF ZF Compa	ZF, CF	
CLI i4	Compare DP _L with immediate data	1 1 0 0 1 1	1 1 1 1 l ₃ l ₂ l ₁ l ₀	2	2	$ZF \leftarrow 1$ if $(DP_1) = I_3 I_2 I_1 I_0$ $ZF \leftarrow 0$ if $(DP_1) I_3 I_2 I_1 I_0$	Compare the contents of DPL with the immediate data. Set ZF if identical and clear ZF if not.	ZF	
CMB t2	Compare AC bit with M data bit	1 1 0 0	1 1 1 1 0 0 t ₁ t ₀	2	2	$Z_{\frac{1}{2}}$ if (AC, 12) = (M (HL), 12) $Z_{\frac{1}{2}}$ if (AC, 12) [M (HL), 12]	Compare the corresponding bits specified by t0 and t1 in AC and M (HL). Set ZF if identical and clear ZF if not.	ZF	
[Load and	store instructions]		45	És.		1/			
LAE	Load AC and E from M2 (HL)	0 1 0 1	1 1 0 0	. 1	1,5°	AĈ ← M (HL), È ← M (HL + 1)	Load the contents of M2 (HL) into AC, E.		
LAI i4	Load AC with immediate data	1 0 0 0	13 12 14 1 ₀	1/	31	$AC \leftarrow I_3 I_2 I_1 I_0$	Load the immediate data into AC.	ZF	Has a vertical skip function
LADR i8	Load AC from M	1 1 0 0 I ₇ I ₆ I ₅ I ₄	0 0 0 1 la l ₂ l ₁ l ₀	2	2	AC ← [M (i8)]	Load the contents of M (i8) into AC.	ZF	
s	Store AC to M	0 1 0 0	0 1 1 1	1	1	M (HL) ← (AC)	Store the contents of AC into M (HL).		
SAE	Store AC and E to M2 (HL)	0 1 0 1	1/1/1 0	1	1	$ \begin{array}{l} M \ (HL) \leftarrow (AC) \\ M \ (HL+1) \leftarrow (E) \end{array} $	Store the contents of AC, E into M2 (HL).		
LA reg	Load AC from M (reg)	0 1 00 0	1 O t ₀ O	1	1	$AC \leftarrow [M \text{ (reg)}]$	Load the contents of M (reg) into AC. The reg is either HL or XY depending on t ₀ . reg T ₀ HL 0 XY 1	ZF	

Continued from preceding page.

		Instructi	on code	er of	er of	0 "	5	Affected	N. c
	Mnemonic	D ₇ D ₆ D ₅ D ₄	D ₃ D ₂ D ₁ D ₀	Number of bytes	Number or cycles	Operation	Description	status bits	Note
[Load and	store instructions]							ı	
LA reg, I	Load AC from M (reg) then increment reg	0 1 0 0	1 0 t ₀ 1	1	2	$\begin{aligned} &AC \leftarrow [M \; (reg)] \\ &DP_L \leftarrow (DP_L) + 1 \\ ∨ \; DP_Y \leftarrow (DP_Y) + 1 \end{aligned}$	Load the contents of M (reg) into AC. (The reg is either H or XY.) Then increment the contents of either DP _L or DP _Y . The relationship between to and reg is the same as that for the LA reg instruction.	ZF	ZF is set according to the result of incrementing DPL or DP
LA reg, D	Load AC from M (reg) then decrement reg	0 1 0 1	1 0 t ₀ 1	1	2	$\begin{array}{l} AC \leftarrow [M \ (reg)] \\ DP_L \leftarrow (DP_L) - 1 \\ or \ DP_Y \leftarrow (DP_Y) - 1 \end{array}$	Load the contents of M (reg) into AC. (The reg is either HL or XY.) Then decrement the contents of either DP or DP. The relationship between to and reg is the same as that for the LA reg instruction.	Ze //	ZF is set according to the result of decrementing DP _L or DP _Y .
XA reg	Exchange AC with M (reg)	0 1 0 0	1 1 t ₀ 0	1	1	(AC) ↔ [M (reg)]	Exchange the contents of M (reg) and AS. The reg is either HL or XY depending on to Teg To The Teg To Teg T		
XA reg, I	Exchange AC with M (reg) then increment reg	0 1 0 0	1 1 t ₀ 1	1	2	$(AC) \leftrightarrow [M,(reg)]$ $DP_{\downarrow} \leftarrow (DP_{\downarrow}) + 1$ or $DP_{\psi} \leftarrow (DP_{\psi}) + 1$	Exchange the contents of M (reg) and AC. (The reg is either HL or XY.) Then increment the contents of either DP ₂ or DP ₃ . The relationship between t ₀ and reg is the same as that for the XA reg instruction.	ZF	ZF is set according to the result of incrementing DP _L or DP _Y .
XA reg, D	Exchange AC with M (reg) then decrement reg	0 1 0 1	1 1 16 1	1	2	(AC) ↔ [M (reg)] DP) ← (DP _L) ← 1 or DP _Y ← (DP _Y) – 1	Exchange the contents of M (reg) and AC. (The reg is either HL or XY.) Then decrement the contents of either DP _L or DP _Y . The relationship between t ₀ and reg is the same as that for the XA reg instruction.	ZF	ZF is set according to the result of decrementing DP _L or DP _Y .
XADR i8	Exchange AC with M direct	1 1 0 0 1 ₇ 1 ₆ 1 ₅ 1 ₄	1 0 0 0 0 l ₃ l ₂ l ₁ l ₀	2	2	(AC) ↔ [M (i8)]	Exchange the contents of AC and M (i8).		
LEAI i8	Load E & AC with immediate data	1 1 1 0 0 1√ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 0 l ₃ l ₂ l ₁ l ₀	2	ر 2	É ← I ₇ I ₆ I ₅ I ₄ ♠C ← I ₃ I ₂ I ₁ I ₀	Load the immediate data i8 into E, AC.		
RTBL	Read table data from program ROM	0 1 0 1	1 0 1 0	12	2	E, AC ← [ROM (PCh, E, AC)]	Load into E, AC the ROM data at the location determined by replacing the lower 8 bits of the PC with E, AC.		
RTBLP	Read table data from program ROM then output to P4, 5	0 1 0 1	1 0 0 0	1	2	Port 4, 5 ← [ROM (PCh, E, AC)]	Output from ports 4 and 5 the ROM data at the location determined by replacing the lower 8 bits of the PC with E, AC.		
[Data poir	nter manipulation instru	ctions]	<i>I S</i>						
LDZ i4	Load DP _H with zero and DP _L with immediate data respectively	0 1 1 0	l ₃ l ₂ l ₁ l ₀	1	1	$\begin{array}{c} DP_H \leftarrow 0 \\ DPL \leftarrow I_3 I_2 I_1 I_0 \end{array}$	Load zero into DP _H and the immediate data i4 into DP _L .		
LHI i4	Load DP _H with immediate data	1, 1, 0 0	1 1 1 1 l ₃ l ₂ l ₁ l ₀	2	2	$DP_H \leftarrow I_3 \; I_2 \; I_1 \; I_0$	Load the immediate data i4 into DP _H .		
LLI i4	Load DP _L with immediate data	1 1 0 0	1 1 1 1 1 1 1 ₃ 1 ₂ 1 ₁ 1 ₀	2	2	$DP_L \leftarrow I_3 \; I_2 \; I_1 \; I_0$	Load the immediate data i4 into DP _L .		
LHLI i8	Load DP _H , DP _L with immediate data	1 1 0 0 I ₇ I ₆ I ₅ I ₄		2	2	$DP_H \leftarrow I_7 I_6 I_5 I_4$ $DP_L \leftarrow I_3 I_2 I_1 I_0$	Load the immediate data into DL _H , DP _L .		
LXYI i8	Load DP _X , DP _Y with immediate data	1 1 0 0 I ₇ I ₆ I ₅ I ₄	0 0 0 0 0 I ₃ I ₂ I ₁ I ₀	2	2	$\begin{array}{c} DP_X \leftarrow I_7 \; I_6 \; I_5 \; I_4 \\ DP_Y \leftarrow I_3 \; I_2 \; I_1 \; I_0 \end{array}$	Load the immediate data into $DL_X,DP_Y.$		

		Instruction	on code	er of	er of			Affected	
	Mnemonic	D ₇ D ₆ D ₅ D ₄	D ₃ D ₂ D ₁ D ₀	Number of bytes	Number o	Operation	Description	status bits	Note
[Data poir	nter manipulation instru	ctions]							
IL	Increment DP _L	0 0 0 1	0 0 0 1	1	1	$DP_L \leftarrow (DP_L) + 1$	Increment the contents of DP _L .	ZF	
DL	Decrement DP _L	0 0 1 0	0 0 0 1	1	1	$DP_L \leftarrow (DP_L) - 1$	Decrement the contents of DP _L .	ZF	Andrew Control of the
IY	Increment DP _Y	0 0 0 1	0 0 1 1	1	1	$DP_Y \leftarrow (DP_Y) + 1$	Increment the contents of DP _Y .	ZF.	
DY	Decrement DP _Y	0 0 1 0	0 0 1 1	1	1	$DP_Y \leftarrow (DP_Y) - 1$	Decrement the contents of DP _Y .	ZF	
TAH	Transfer AC to DP _H	1 1 0 0	1 1 1 1 0 0 0 0	2	2	DP _H ← (AC)	Transfer the contents of AC to DP _H .		of Lot Laboratory
THA	Transfer DP _H to AC	1 1 0 0	1 1 1 1 0 0 0 0	2	2	$AC \leftarrow (DP_H)$	Transfer the contents of DPH to AC.	ZF	
XAH	Exchange AC with DP _H	0 1 0 0	0 0 0 0	1	1	$(AC) \leftrightarrow (DP_H)$	Exchange the contents of AC and DP _H .	J. J	
TAL	Transfer AC to DP _L	1 1 0 0 1 1 1 1	1 1 1 1 0 0 0 1	2	2	$DP_L \leftarrow (AC)$	rTransfer the contents of AC to DPc.		
TLA	Transfer DP _L to AC	1 1 0 0 1 1 1 0	1 1 1 1 0 0 0 1	2	2	$AC \leftarrow (DP_L)$	Transfer the contents of DP _L to AC.	ZF	
XAL	Exchange AC with DP _L	0 1 0 0	0 0 0 1	1	1	$(AC) \leftrightarrow (DP_L)$	Exchange the contents of AC and DP _L .		
TAX	Transfer AC to DP _X	1 1 0 0	1 1 1 1 0 0 1 0	2	2	$DP_{X} \leftarrow (AC)$	Transfer the contents of AC to DP _X .		
TXA	Transfer DP _X to AC	1 1 0 0 1 1 1 0	1 1 1 1 0 0 1 0	2	2	$AC \leftarrow (DP_X)$	Transfer the contents of DP _X to AC.	ZF	
XAX	Exchange AC with DP _X	0 1 0 0	0 0 1 0	1	1,3	(AC) ⇔(DP _X)	Exchange the contents of AC and DPx.		
TAY	Transfer AC to DP _Y	1 1 0 0	1 1 1 1 0 0 1 1	2	2	$DP_{Y} \leftarrow (AC)$	Transfer the contents of AC to DP _Y .		
TYA	Transfer DP _Y to AC	1 1 0 0 1 1 1 0	1 1 1 1 0 0 1 1	2	2	AC ← (DPy)	Fransfer the contents of DP _Y to AC.	ZF	
XAY	Exchange AC with DP _Y	0 1 0 0	0 0 1 1	1.3	. 1	(AC) ↔ (DP _Y)	Exchange the contents of AC and DP _Y .		
[Flag man	ipulation instructions]		g de grade			N //			
SFB n4	Set flag bit	0 1 1 1	n ₃ n ₂ n ₁ n ₀	1		Fn ← 1	Set the flag specified by n4 to 1.		
RFB n4	Reset flag bit	0 0 1 1	n ₃ n ₂ n ₁ n ₀	1	1	Fn 0	Reset the flag specified by n4 to 0.	ZF	
[Jump and	d subroutine instruction	s] 💒 🥖	100	- T.	<u></u>	de de la companya de			
JMP addr	Jump in the current bank	1 1 1 0 P ₇ P ₆ P ₅ P ₄	P ₁₁ P ₁₀ P ₉ P ₈ P ₃ P ₂ P ₁ P ₀	2,4	2	PC13, 12 ← PC13, 12 PC11 to 0 ← P ₁₁ to P ₈	Jump to the location in the same bank specified by the immediate data P12.		This becomes PC12 + (PC12) immediately following a BANK instruction.
JPEA	Jump to the address stored at E and AC in the current page	0 0 1 0	0 1 1 1	1	1	PC13 to 8 \leftarrow PC13 to 8, PC7 to 4 \leftarrow (E), PC3 to 0 \leftarrow (AC)	Jump to the location determined by replacing the lower 8 bits of the PC by E, AC.		
CAL addr	Call subreutine	0 1 0 1 P ₇ P ₆ P ₅ P ₄	0 P ₁₀ P ₉ P ₈ P ₃ P ₂ P ₁ P ₀	2	2	$\begin{array}{l} \text{PC13 to } 11 \leftarrow 0, \\ \text{PC10 to } 0 \leftarrow \\ \text{P}_{10} \text{ to } \text{P}_{0}, \\ \text{M4 (SP)} \leftarrow \\ (\text{CF, ZF, PC13 to 0}), \\ \text{SP} \leftarrow (\text{SP})\text{-4} \end{array}$	Call a subroutine.		
CZP addr	Call subroutine in the zero page	4 0 1 0	P ₃ P ₂ P ₁ P ₀	1	2	$\begin{aligned} & \text{PC13 to 6,} \\ & \text{PC10} \leftarrow 0, \\ & \text{PC5 to 2} \leftarrow P_3 \text{ to P_0,} \\ & \text{M4 (SP)} \leftarrow \\ & \text{(CF, ZF, PC12 to 0),} \\ & \text{SP} \leftarrow \text{SP-4} \end{aligned}$	Call a subroutine on page 0 in bank 0.		
BANK	Change bank	0 0 0 1	1 0 1 1	1	1		Change the memory bank and register bank.		


	Mnemonic	Instructi	on code	oer of	oer of s	Operation	Description	Affected status	Note
		D ₇ D ₆ D ₅ D ₄	D ₃ D ₂ D ₁ D ₀	Number of bytes	Number o	operation.	2000p.i.o	bits	11010
[Jump an	d subroutine instruction	s]						ŧ.	
PUSH reg	Push reg on M2 (SP)	1 1 0 0 1 1 1 1	1 1 1 1 1 i ₁ i ₀ 0	2	2	$M2 (SP) \leftarrow (reg)$ $SP \leftarrow (SP) - 2$	Store the contents of reg in M2 (SP). Subtract 2 from SP after the store. reg i ₁ l ₀ 0 1		
POP reg	Pop reg off M2 (SP)	1 1 0 0		2	2	$SP \leftarrow (SP) + 2$ $reg \leftarrow [M2 (SP)]$	Add 2 to SP and then toad the contents of M2(SP) into reg. The relation between 11:0 and reg is the same as that for the PUSH reg instruction.		
RT	Return from subroutine	0 0 0 1	1 1 0 0	1	2	SP ← (SP) + 4 PC ← [M4 (SP)]	Return from a subroutine or interrupt handling routine. ZF and CF are not restored.		
RTI	Return from interrupt routine	0 0 0 1	1 1 0 1	1	2	SP ← (SP) + # PC ← [M4 (SP)] CF, ZF ← [M4 (SP)]	Return from a subroutine or interrupt handling routine. ZF and CF are restored.	ZF, CF	
[Branch in	nstructions]					1 1 1 1100			
BAt2 addr	Branch on AC bit	1 1 0 1 P ₇ P ₆ P ₅ P ₄	0 0 t ₁ t ₀ P ₃ P ₂ P ₁ P ₀	2	2	PC7/10/0 ← P ₇ P ₆ P ₅ P ₄ P ₃ P ₂ P ₁ P ₀ if (AG;12) = 1	Branch to the location in the same page specified by P ₇ to P ₀ , if the bit in AC specified by the immediate data t ₁ t ₀ is one.		
BNAt2 addr	Branch on no AC bit	1 0 0 1 P ₇ P ₆ P ₅ P ₄	0 0 t ₁ t ₀ P ₃ P ₂ P ₁ P ₀	2	2	PC7 to 0 ← P ₇ P ₆ P ₅ P ₄ P ₃ P ₂ P ₆ P ₆ it (AC, t2) = 0	Branch to the location in the same page specified by P ₇ to P ₀ , if the bit in AC specified by the immediate data t ₁ t ₀ is zero.		
BMt2 addr	Branch on M bit	1 1 0 1 P ₇ P ₆ P ₅ P ₄	0 1 t, to	2	2	PC7-tb.0 +	Branch to the location in the same page specified by P ₇ to P ₀ if the bit in M (HL) specified by the immediate data t ₁ t ₀ is one.		
BNMt2 addr	Branch on no M bit	1 0 0 1 P ₇ P ₆ P ₅ P ₄	0 1 t ₁ t ₀ P ₃ P ₂ R ₃ P ₀	. 2	2	PC7 to 0 4 P7 P6 P5 P4 P3 P2 P1 P0 if [M (HL),t2]	Branch to the location in the same page specified by P_7 to P_0 if the bit in M (HL) specified by the immediate data t_1 t_0 is zero.		
BPt2 addr	Branch on Port bit	1 1 0 1 P7 8 P5 P	1 0 t ₁ t ₀ P ₂ P ₁ P ₂	2	2	PC7 to $0 \leftarrow P_7 P_6 P_5 P_4 P_3 P_2 P_1 P_0 $ if $[P (DP_L), 12] = 1$	Branch to the location in the same page specified by P_7 to P_0 if the bit in port (DP _L) specified by the immediate data t_1 t_0 is one.		Internal control registers can also be tested by executing this instruction immediately after a BANK instruction. However, this is limited to registers that can be read out.
BNPt2 addr	Branch on no Port bit	1 0 0 1 P7 P6 P5 P4	1 0 t ₁ t ₀ P ₃ P ₂ P ₁ P ₀	2	2	$\begin{aligned} & \text{PC7 to } 0 \leftarrow \\ & & \text{P}_7 \text{P}_6 \text{P}_5 \text{P}_4 \\ & & \text{P}_3 \text{P}_2 \text{P}_1 \text{P}_0 \\ & \text{if } [\text{P (DP_L)}, \text{t2}] \\ & = 0 \end{aligned}$	Branch to the location in the same page specified by P_7 to P_0 if the bit in port (DP _L) specified by the immediate data t_1 t_0 is zero.		Internal control registers can also be tested by executing this instruction immediately after a BANK instruction. However, this is limited to registers that can be read out.

Continued from preceding page.

	Mnemonic	Instructi	on code	ber of	ber of	Operation	Description	Affected status	Note
		D ₇ D ₆ D ₅ D ₄	D ₃ D ₂ D ₁ D ₀	Number of bytes	Num	·	'	bits	
[Branch in	nstructions]	Ι	I			T	1	fre.	
BC addr	Branch on CF	1 1 0 1 P ₇ P ₆ P ₅ P ₄	1 1 0 0 P ₃ P ₂ P ₁ P ₀	2	2	$PC7 \text{ to } 0 \leftarrow P_7 P_6 P_5 P_4 P_3 P_2 P_1 P_0$ if (CF) = 1	Branch to the location in the same page specified by Py to P ₀ if CF is one.		Charles State of the State of t
BNC addr	Branch on no CF	1 0 0 1 P ₇ P ₆ P ₅ P ₄	1 1 0 0 P ₃ P ₂ P ₁ P ₀	2	2	PC7 to $0 \leftarrow$ $P_7 P_6 P_5 P_4$ $P_3 P_2 P_1 P_0$ if (CF) = 0	Branch to the location in the same page specified by P ₇ to P ₀ if CF is zero.		
BZ addr	Branch on ZF	1 1 0 1 P ₇ P ₆ P ₅ P ₄	1 1 0 1 P ₃ P ₂ P ₁ P ₀	2	2	PC7 to $0 \leftarrow P_7 P_6 P_5 P_4 P_3 P_2 P_1 P_0$ if (ZF) = 1	Branch to the location in the same page specified by P ₇ to P ₀ if ZF is one.		A A A A A A A A A A A A A A A A A A A
BNZ addr	Branch on no ZF	1 0 0 1 P ₇ P ₆ P ₅ P ₄	1 1 0 1 P ₃ P ₂ P ₁ P ₀	2	2	PC7 to $0 \leftarrow P_7 P_6 P_5 P_4 P_3 P_2 P_1 P_0$ if $(ZF) = 0$	Branch to the location in the same page specified by P_7 to P_0 if ZF is zero.		*
BFn4 addr	Branch on flag bit	1 1 1 1 P ₇ P ₆ P ₅ P ₄	n ₃ n ₂ n ₁ n ₀ P ₃ P ₂ P ₁ P ₀	2	2	PC7 to $0 \leftarrow P_7 P_6 P_5 P_4 P_3 P_2 P_1 P_0$ if (Fn) = 1	Branch to the location in the same page specified by P_0 to P_7 if the flag (of the 16 user flags) specified by $n_3 n_2 n_1 n_0$ is one		
BNFn4 addr	Branch on no flag bit	1 0 1 1 P ₇ P ₆ P ₅ P ₄	n ₃ n ₂ n ₁ n ₀ P ₃ P ₂ P ₁ P ₀	2	2	PC7 to $0 \leftarrow$ $P_7 P_6 P_5 P_3$ $P_3 P_2 P_1 P_0$ if $(Fn) = 0$	Branch to the location in the same page specified by P_0 to P_7 if the flag (of the 16 user flags) specified by n_3 n_2 n_1 n_0 is zero.		
[I/O instru	ctions]						//		
IP0	Input port 0 to AC	0 0 1 0	0 0 0 0	1,3	4	AÇ ← (P0)	Input the contents of port 0 to AC.	ZF	
IP	Input port to AC	0 0 1 0	0 1 1 0	1	1	$AC \leftarrow [P(DP_L)]$	Input the contents of port P (DP _L) to AC.	ZF	
IPM	Input port to M	0 0 0 1	1 0 0 1	1	A.	M (HŁ) ← [P (DRL)]	Input the contents of port P (DP _L) to M (HL).		
IPDR i4	Input port to AC direct	1 1 0 0 0 0 1 1 0	1 /1 /1 1 g g ₁ ₁ ₀	2	2	S083/39/8/2007 & 3	Input the contents of P (i4) to AC.	ZF	
IP45	Input port 4, 5 to E, AC respectively	1 1 0 0	A 1 1, 1	491-350-M	2	E ← [P.(4)] AC ← [P.(5)]	Input the contents of ports P (4) and P (5) to E and AC respectively.		
ОР	Output AC to port	0 0 1 0	0 1 0 1	٠,	1	$P(DP_L) \leftarrow (AC)$	Output the contents of AC to port P (DP _L).		
ОРМ	Output M to port	0,0 0 1	1010	1		$P (DP_L) \leftarrow [M (HL)]$	Output the contents of M (HL) to port P (DP _L).		
OPDR i4	Output AC to port direct	1 1 0 0	1 1 1 1 1 ₃ 1 ₂ 1 ₁ 1 ₀	2	2	P (i4) ← (AC)	Output the contents of AC to P (i4).		
OP45	Output E, AC to port 4, 5 respectively	1 1 0 0 1 1 0 1	Service .	2	2	P (4) ← (E) P (5) ← (AC)	Output the contents of E and AC to ports P (4) and P (5) respectively.		
SPB t2	Set port bit	0 0 0 0	1 0 t ₁ t ₀	1	1	$[P\ (DP_L),t2]\leftarrow 1$	Set to one the bit in port P (DP _L) specified by the immediate data t ₁ t ₀ .		
RPB t2	Reset port bit	0 0 1 0	0 t ₁ t ₀	1	1	$[P (DP_L), t2] \leftarrow 0$	Clear to zero the bit in port P (DP _L) specified by the immediate data t ₁ t ₀ .	ZF	
ANDPDR i4, p4	And port with immediate data then output	1 1 0 0 ls ls l ₁ l ₀	0 1 0 1 P ₃ P ₂ P ₁ P ₀	2	2	$P (P_3 \text{ to } P_0) \leftarrow \\ [P (P_3 \text{ to } P_0)] \lor \\ I_3 \text{ to } I_0$	Take the logical AND of P (P_3 to P_0) and the immediate data I_3 I_2 I_1 I_0 and output the result to P (P_3 to P_0).	ZF	
ORPDR i4, p4	Or port with immediate data then output	1 1 0 0 l ₃ l ₂ l ₁ l ₀	0 1 0 0 P ₃ P ₂ P ₁ P ₀	2	2	$P (P_3 \text{ to } P_0) \leftarrow \\ [P (P_3 \text{ to } P_0)] \lor \\ I_3 \text{ to } I_0$	Take the logical OR of P (P_3 to P_0) and the immediate data I_3 I_2 I_1 I_0 and output the result to P (P_3 to P_0).	ZF	

	Mnemonic	Instructi	on code	oer of	s of	Operation	Description	Affected status	Note
	Milemonic	D ₇ D ₆ D ₅ D ₄	D ₃ D ₂ D ₁ D ₀	Number bytes	Number of cycles	Operation	Description	bits	Note
[Timer co	ntrol instructions]	•	•						
WTTMO	Write timer 0	1 1 0 0	1 0 1 0	1	2	TIMER0 \leftarrow [M2 (HL)], (AC)	Write the contents of M2 (HL) AC into the timer 0 reload register.	A CONTRACTOR OF THE PARTY OF TH	^k ileg _{er}
WTTM1	Write timer 1	1 1 0 0	1 1 1 1 0 1 0 0	2	2	TIMER1 ← (E), (AC)	Write the contents of E. AC into the timer 1 reload register A.		A STATE OF THE STA
RTIM0	Read timer 0	1 1 0 0	1 0 1 1	1	2	M2 (HL), AC ← (TIMER0)	Read out the contents of the timer 0 counter into M2 (HL), AC.		
RTIM1	Read timer 1	1 1 0 0	1 1 1 1 0 1	2	2	$E,AC \leftarrow (TIMER1)$	Read out the contents of the timer 1 counter into E, AC		
START0	Start timer 0	1 1 0 0 1 1 1 0	1 1 1 1 0	2	2	Start timer 0 counter	Start the timer 0 counter.		<i></i>
START1	Start timer 1	1 1 0 0	1 1 1 1 1 0 1 1 1	2	2	Start timer 1 counter	Start the timer 1 counter.	and the second second	
STOP0	Stop timer 0	1 1 0 0	1 1 1 1 0	2	2	Stop timer 0 counter	Stop the timer 0 counter.		
STOP1	Stop timer 1	1 1 0 0	1 1 1 1 1 0 1 1	2	2	Stop timer 1 counter	Stop the time 1 counter.		
[Interrupt	control instructions]								
MSET	Set interrupt master enable flag	1 1 0 0 0 1 0 1	1 1 0 1	2	2	MSE ←1	Set the interrupt master enable flag to one.		
MRESET	Reset interrupt master enable flag	1 1 0 0 1	1 1 0 1 0 0 0	2	2	MSE ← 0	Clear the interrupt master enable flag to zero.		
EIH i4	Enable interrupt high	1 1 0 0 0 1 0 1	1 1 0 1 I ₃ I ₂ I ₁ I ₀	2	2	EDIH ← (EDIH) √ 14	Set the interrupt enable flag to one.		
EIL i4	Enable interrupt low	1 1 0 0 0 1 0 0	1 1 0 1 I ₃ I ₂ I ₁ I ₀	2	2	EDIL ← (EDIL) y i4	Set the interrupt enable flag to one.		
DIH i4	Disable interrupt high	1 1 0 0 1 0 0 1	1 1 0 1/ l ₃ l ₂ l ₁ /l _{9/}	2	2	EDIH ← (EDIH) ∧ i4	Grear the interrupt enable flag to zero.	ZF	
DIL i4	Disable interrupt low	1 1 0 0 1 0 0 0	1 1 0 1 1 ₃ 1 ₂ 1 ₃ 1 ₀	2.	2	EDIL ← (EDIL) √ i4	Clear the interrupt enable flag to zero.	ZF	
WTSP	Write SP	1 1 0 0 1	1, 1, 1 1 1, 0 1 0	2	2	SP ← (E), (AC)	Transfer the contents of E, AC to SP.		
RSP	Read SP	1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 0 1 1	2	2	E, AÇ (SP)	Transfer the contents of SP to E, AC.		
[Standby	control instructions]		(F F F F F F F F F F F F F F F F F F F		75"				
HALT	HALT	1 1 0 0 1 1 0 1	1 1 1 1 1 1 1 0	2	2	HALT	Enter halt mode.		
HOLD	HOLD	1/1 0 0 1 1 0 1	1 1 1 1 1 1 1	2	2.8	HOLD	Enter hold mode.		
[Serial I/O	control instructions	3			ag:				
STARTS	Start serial I Ø	1 1 0 0 1 1 1 0	1 1 1 1 1 1 1 0	2	2	START SI O	Start SIO operation.		
WTSIO	Write serial O	1 1 0 0 1 1 1 0	1 1 1 1 1	2	2	$SIO \leftarrow (E), (AC)$	Write the contents of E, AC to SIO.		
RSIO	Read serial I O	1 1 0 0 1 1 1 1	1/1/1 1 1/1 1 1	2	2	$E, AC \leftarrow (SIO)$	Read out the contents of SIO into E, AC.		
[Other ins									
NOP _	No operation	0 0 0 0	0 0 0 0	1	1	No operation	Consume one machine cycle without performing any operation.		
SB i2	Select bank	1 1 0 0	1 1 1 1 0 0 I ₁ I ₀	2	2	PC12 ← I ₁ I ₀	Specify the memory bank.		

Note: The range of for i2 in SB instruction varies according to device. Refer to User's Manual for that.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 1997. Specifications and information herein are subject to change without notice.